A088229
Number of n X n (0,1) matrices with distinct rows.
Original entry on oeis.org
1, 2, 12, 336, 43680, 24165120, 53981544960, 476410007808000, 16517640193528320000, 2252801478912508197273600, 1212983979979000042023881932800, 2587892965783744956308448364029542400, 21943955209199862746410706867184116563968000
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 03 2003
a(0)=1 prepended and terms a(12) and beyond from
Andrew Howroyd, Jan 27 2020
A101346
a(n) = binomial(2^n, n-1).
Original entry on oeis.org
1, 4, 28, 560, 35960, 7624512, 5423611200, 13161885792000, 110859231254749120, 3293259778311548232704, 349928324708588104171703296, 134575849279352109587517966790656, 189165427620415586720308268784807487488, 979739920960712963224129514007339757999308800
Offset: 1
-
seq(binomial(2^n,n-1),n=1..20);
-
Table[Binomial[2^n,n-1], {n,1,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
a(n)=binomial(2^n,n-1) \\ Paul D. Hanna, Jun 21 2009
-
a(n)=polcoeff(x*sum(k=0,n,2^k*log(1+2^k*x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, Jun 21 2009
A136507
a(n) = Sum_{k=0..n} binomial(2^(n-k) + k, n-k).
Original entry on oeis.org
1, 3, 10, 71, 1925, 203904, 75214965, 94608676477, 409763735870986, 6208539881584781823, 334272186911271376874561, 64832512634295914941490910360, 45811927207957062190019240099653265
Offset: 0
-
[(&+[Binomial(2^k +n-k, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136507:= n-> add(binomial(2^k +n-k, k), k=0..n); seq(A136507(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Sum[Binomial[2^(n-k)+k,n-k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 08 2015 *)
-
{a(n)=sum(k=0,n,binomial(2^(n-k)+k,n-k))}
for(n=0,16, print1(a(n),", "))
-
/* a(n) = coefficient of x^n in o.g.f. series: */
{a(n)=polcoeff(sum(i=0,n,1/(1-x-2^i*x^2 +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)}
for(n=0,16, print1(a(n),", "))
-
[sum(binomial(2^k +n-k, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A360693
Number T(n,k) of sets of n words of length n over binary alphabet where the first letter occurs k times; triangle T(n,k), n>=0, n-signum(n)<=k<=n*(n-1)+signum(n), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 10, 15, 15, 10, 3, 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4, 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, 27820, 19752, 11680, 5645, 2150, 600, 101, 5, 6, 226, 2490, 14745, 61770, 200529, 535674, 1211485, 2368200
Offset: 0
T(2,3) = 2: {aa,ab}, {aa,ba}.
T(3,3) = 10: {aab,abb,bbb}, {aab,bab,bbb}, {aab,bba,bbb}, {aba,abb,bbb}, {aba,bab,bbb}, {aba,bba,bbb}, {abb,baa,bbb}, {abb,bab,bba}, {baa,bab,bbb}, {baa,bba,bbb}.
T(4,3) = 4: {abbb,babb,bbab,bbbb}, {abbb,babb,bbba,bbbb}, {abbb,bbab,bbba,bbbb}, {babb,bbab,bbba,bbbb}.
Triangle T(n,k) begins:
1;
1, 1;
. 2, 2, 2;
. . 3, 10, 15, 15, 10, 3;
. . . 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4;
. . . . 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, ...;
...
Main diagonal T(n,n) gives
A154323(n-1) for n>=1.
T(n,n-1) gives
A000027(n) for n>=1.
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=n-signum(n)..n*(n-1)+signum(n)))(g(n$3)):
seq(T(n), n=0..6);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
T[n_] := Table[Coefficient[#, x, i], {i, n - Sign[n], n(n - 1) + Sign[n]}]&[g[n, n, n]];
Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
A093048
a(n) = n minus exponent of 2 in n, with a(0) = 0.
Original entry on oeis.org
0, 1, 1, 3, 2, 5, 5, 7, 5, 9, 9, 11, 10, 13, 13, 15, 12, 17, 17, 19, 18, 21, 21, 23, 21, 25, 25, 27, 26, 29, 29, 31, 27, 33, 33, 35, 34, 37, 37, 39, 37, 41, 41, 43, 42, 45, 45, 47, 44, 49, 49, 51, 50, 53, 53, 55, 53, 57, 57, 59, 58, 61, 61, 63, 58, 65, 65, 67, 66, 69
Offset: 0
G.f. = x + x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 5*x^6 + 7*x^7 + 5*x^8 + 9*x^9 + ... - _Michael Somos_, Jan 25 2020
-
A093048 := proc(n)
n-A007814(n) ;
end proc: # R. J. Mathar, Jul 24 2014
-
a[ n_] := If[ n == 0, n - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
-
a(n) = if(n<1, 0, if(n%2==0, a(n/2) + n/2 - 1, n))
-
a(n) = n - valuation(n, 2) \\ Jianing Song, Oct 24 2018
-
def A093048(n): return n-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022
A136470
Triangle T, read by rows, where column 0 of T^m = {C(m*2^n, n), n>=0} for all m.
Original entry on oeis.org
1, 2, 1, 6, 8, 1, 56, 128, 32, 1, 1820, 6048, 2176, 128, 1, 201376, 912128, 419328, 34816, 512, 1, 74974368, 449708544, 249300992, 26198016, 548864, 2048, 1, 94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1, 409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1, 6208116950265950720, 80121787455478857728, 65415571433959456768, 10679727629898088448, 399723620798038016, 3391703461396480, 6141702569984, 2172649472, 131072, 1
Offset: 0
Triangle T begins:
1;
2, 1;
6, 8, 1;
56, 128, 32, 1;
1820, 6048, 2176, 128, 1;
201376, 912128, 419328, 34816, 512, 1;
74974368, 449708544, 249300992, 26198016, 548864, 2048, 1;
94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1;
409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1; ...
Column 0 of T^m is given by: [T^m](n,0) = C(m*2^n, n) for n>=0.
-
{T(n,k)=local(M=matrix(n+1,n+1,r,c,binomial(r*2^(c-2),c-1)),P); P=matrix(n+1,n+1,r,c,binomial((r+1)*2^(c-2),c-1));((P~*M~^-1)^2)[n+1,k+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A136636
a(n) = n * C(2*3^(n-1), n) for n>=1.
Original entry on oeis.org
2, 30, 2448, 1265004, 4368213360, 106458751541142, 19173684851378353296, 26413015283743616538733008, 285290979402099025600644272168880, 24601033850235942230699563821233785600080
Offset: 1
A166995
G.f.: C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)!, a power series in x with integer coefficients.
Original entry on oeis.org
1, 0, 8, 32, 2848, 87808, 97425920, 18364346368, 459757145081856, 468713931103109120, 349620381018764380930048, 1788712998645738038832398336, 46562065744123901943395531497144320
Offset: 0
G.f: C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
The g.f. of A166996 is S(x):
S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)!
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
where C(x) + S(x) = Sum_{n>=0} C(2^n + n - 1, n)*x^n ... (cf. A060690)
and C(x) - S(x) = Sum_{n>=0} C(2^n, n)*(-x)^n ... (cf. A014070).
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
-
Table[(1/2)*(Binomial[2^n + n - 1, n ] + (-1)^n *Binomial[2^n, n]), {n, 0, 10}] (* G. C. Greubel, May 30 2016 *)
-
{a(n)=polcoeff(sum(k=0,n,log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!),n)}
-
{a(n)=(binomial(2^n + n-1, n) + (-1)^n*binomial(2^n, n))/2} \\ Paul D. Hanna, Nov 24 2009
A166996
G.f.: S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)!, a power series in x with integer coefficients.
Original entry on oeis.org
2, 2, 88, 1028, 289184, 22451552, 112890141568, 50093449805856, 6676830881369059840, 15354513520142235310592, 66620888067382334066280699904, 750203718611121304644623635491840
Offset: 1
G.f.: S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 + ...
The g.f. of A166995 is C(x):
C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)!.
C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 + ...
where C(x) + S(x) = Sum_{n>=0} C(2^n + n - 1, n)*x^n ... (cf. A060690)
and C(x) - S(x) = Sum_{n>=0} C(2^n, n)*(-x)^n ... (cf. A014070).
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 + ...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 + ...
-
Table[(1/2)*(Binomial[2^n + n - 1, n ] - (-1)^n *Binomial[2^n, n]), {n, 50}] (* G. C. Greubel, May 30 2016 *)
-
{a(n)=polcoeff(-sum(k=0,n,log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!),n)}
-
{a(n)=(binomial(2^n + n-1, n) - (-1)^n*binomial(2^n, n))/2} \\ Paul D. Hanna, Nov 24 2009
A166998
G.f.: sqrt(C(x)^2 - S(x)^2) where C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)! and S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)! are the g.f.s of A166995 and A166996, respectively.
Original entry on oeis.org
1, 0, 6, 28, 2684, 85664, 96848424, 18318978896, 459531493100736, 468613553577122688, 349607028167776160389536, 1788682277200384090414421312, 46561932503015793339090359576558496
Offset: 0
G.f: 1 + 6*x^2 + 28*x^3 + 2684*x^4 + 85664*x^5 + 96848424*x^6 +...
which equals sqrt( C(x)^2 - S(x)^2 ) where
C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
-
{a(n)=polcoeff(sqrt(sum(k=0,n,log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!)^2-sum(k=0,n,log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!)^2),n)}
Comments