A136463
Diagonal of square array A136462: a(n) = C((n+1)*2^(n-1), n) for n>=0.
Original entry on oeis.org
1, 2, 15, 560, 91390, 61124064, 163995687856, 1756185841659392, 75079359427627897200, 12831653340946454374300160, 8777916355714456994772455584000, 24054320541767107204031746600673906688
Offset: 0
-
Table[Binomial[(n+1)2^(n-1),n],{n,0,15}] (* Harvey P. Dale, Apr 20 2011 *)
-
a(n)=binomial((n+1)*2^(n-1),n)
-
/* a(n) = Coefficient of x^n in series: */
a(n)=polcoeff(sum(i=0,n,((n+1)/2)^i*log(1+2^i*x +x*O(x^n))^i/i!),n)
A136466
Row 2 of square array A136462: a(n) = C(3*2^(n-1), n) for n>=0.
Original entry on oeis.org
1, 3, 15, 220, 10626, 1712304, 927048304, 1708566412608, 10895665708319184, 244373929798154341120, 19561373281624772727757056, 5658395223117478029148167447552, 5975982733408602667847206514763365888
Offset: 0
-
Table[Binomial[3*2^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
a(n)=binomial(3*2^(n-1),n)
-
/* T(n,k) = Coefficient of x^k in series: */ a(n)=polcoeff(sum(i=0,n,(3/2)^i*log(1+2^i*x +x*O(x^n))^i/i!),n)
A136501
Triangle, read by rows, where T(n,k) = C(2^k,n-k) for n>=k>=0.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 0, 1, 4, 1, 0, 0, 6, 8, 1, 0, 0, 4, 28, 16, 1, 0, 0, 1, 56, 120, 32, 1, 0, 0, 0, 70, 560, 496, 64, 1, 0, 0, 0, 56, 1820, 4960, 2016, 128, 1, 0, 0, 0, 28, 4368, 35960, 41664, 8128, 256, 1, 0, 0, 0, 8, 8008, 201376, 635376, 341376, 32640, 512, 1, 0, 0, 0, 1, 11440, 906192, 7624512, 10668000, 2763520, 130816, 1024, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 2, 1;
0, 1, 4, 1;
0, 0, 6, 8, 1;
0, 0, 4, 28, 16, 1;
0, 0, 1, 56, 120, 32, 1;
0, 0, 0, 70, 560, 496, 64, 1;
0, 0, 0, 56, 1820, 4960, 2016, 128, 1;
0, 0, 0, 28, 4368, 35960, 41664, 8128, 256, 1;
0, 0, 0, 8, 8008, 201376, 635376, 341376, 32640, 512, 1;
0, 0, 0, 1, 11440, 906192, 7624512, 10668000, 2763520, 130816, 1024, 1;
-
[Binomial(2^k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2021
-
Table[Binomial[2^k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 15 2021 *)
-
T(n,k)=binomial(2^k,n-k)
-
flatten([[binomial(2^k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 15 2021
A136635
Triangle, read by rows, where T(n,k) = C(n,k) * C(2^k*3^(n-k), n) for n>=k>=0.
Original entry on oeis.org
1, 3, 2, 36, 30, 6, 2925, 2448, 660, 56, 1663740, 1265004, 353430, 42504, 1820, 6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376, 204208594169580, 106458751541142, 23004238451040, 2630276490960
Offset: 0
Triangle begins:
1;
3, 2;
36, 30, 6;
2925, 2448, 660, 56;
1663740, 1265004, 353430, 42504, 1820;
6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376;
204208594169580, 106458751541142, 23004238451040, 2630276490960, 167150463480, 5562289824, 74974368; ...
-
Flatten[Table[Binomial[n,k]Binomial[2^k 3^(n-k),n],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 13 2012 *)
-
{T(n,k)=binomial(n,k)*binomial(2^k*3^(n-k),n)}
-
/* Using g.f.: */ {T(n,k)=polcoeff(polcoeff(sum(i=0,n,log(1+3^i*x+2^i*x*y)^i/i!),n,x),k,y)}
A136637
a(n) = Sum_{k=0..n} C(n, k) * C(2^k*3^(n-k), n).
Original entry on oeis.org
1, 5, 72, 6089, 3326498, 12405917044, 336474648380394, 69883583587428350874, 115099747754889610404191160, 1536533057081060754026861201898620, 168527150638482484315370462123098294514192
Offset: 0
More generally,
if Sum_{n>=0} log(1 + (p^n + r*q^n)*x )^n / n! = Sum_{n>=0} b(n)*x^n,
then b(n) = Sum_{k=0..n} C(n,k)*r^(n-k) * C(p^k*q^(n-k), n)
(a result due to _Vladeta Jovovic_, Jan 13 2008).
-
Table[Sum[Binomial[n,k]*Binomial[2^k*3^(n-k),n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*binomial(2^k*3^(n-k),n))}
-
/* Using g.f.: */ {a(n)=polcoeff(sum(i=0,n,log(1+(2^i+3^i)*x)^i/i!),n,x)}
A136638
a(n) = Sum_{k=0..[n/2]} C(n-k, k) * C(3^(n-2*k)*2^k, n-k).
Original entry on oeis.org
1, 3, 38, 2955, 1666194, 6775599252, 204212962736426, 47025953519744215608, 84798028785462127288681736, 1219731316443261012339196962784452, 141916030637329352970764084182705691263552
Offset: 0
More generally, if Sum_{n>=0} log(1 + b*p^n*x + d*q^n*x^2)^n/n! = Sum_{n>=0} a(n)*x^n then a(n) = Sum_{k=0..[n/2]} C(n-k,k)*b^(n-2k)*d^k*C(p^(n-2k)*q^k,n-k).
-
Table[Sum[Binomial[n-k,k]*Binomial[2^k*3^(n-2*k),n-k], {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
{a(n)=sum(k=0,n\2,binomial(n-k,k)*binomial(3^(n-2*k)*2^k,n-k))}
-
/* Using g.f.: */ {a(n)=polcoeff(sum(i=0,n,log(1+3^i*x+2^i*x^2)^i/i!),n,x)}
A166997
G.f.: C(x)^2 - S(x)^2 where C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)! and S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)! are the g.f.s of A166995 and A166996, respectively.
Original entry on oeis.org
1, 0, 12, 56, 5404, 171664, 193729840, 36639136064, 919064160383600, 937227332865348224, 699214061851483321467008, 3577364560049979516493456896, 93123865010226899737836259608990464
Offset: 0
G.f: 1 + 12*x^2 + 56*x^3 + 5404*x^4 + 171664*x^5 + 193729840*x^6 +...
which equals C(x)^2 - S(x)^2 where
C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
-
{a(n)=polcoeff(sum(k=0,n,log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!)^2-sum(k=0,n,log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!)^2,n)}
A060430
Residue C(2^n,n) mod C(2^n,2).
Original entry on oeis.org
0, 0, 0, 20, 0, 1344, 0, 8160, 0, 349184, 0, 1397760, 0, 0, 306774016, 268431360, 0, 7635468288, 0, 494779760640, 942438088704, 0, 0, 105553109975040, 0, 0, 0, 6004799480791040, 0, 192153583922184192, 0, 576460752169205760, 0, 49191317527028826112, 0
Offset: 1
-
for n from 1 to 60 do printf(`%d,`,binomial(2^n, n) mod binomial(2^n,2)) od:
-
Table[Mod[Binomial[2^n,n],Binomial[2^n,2]],{n,40}] (* Harvey P. Dale, Feb 11 2015 *)
-
from math import comb
def A060430(n): return comb(m:=1<Chai Wah Wu, Aug 01 2025
A060497
a(n) = binomial(2^n, prime(n)).
Original entry on oeis.org
1, 4, 56, 11440, 129024480, 13136858812224, 614965786737727286400, 23665616042362569982121184000, 4818341997044953599090397918009939136000, 150781781287041846344613980638793530715139659227762775040
Offset: 1
n = 4, a(4) = binomial(16,7) = binomial(2^4, p(4)) = 11440.
A187083
a(n) = binomial(n^n, n).
Original entry on oeis.org
1, 6, 2925, 174792640, 2475588476563125, 14320984850603177651837856, 50975600425441237253196072020826978589, 155681826868802708662507744652859497547627180714885120, 541851389452483826218851027234763464912884507272826833630475746754951097
Offset: 1
-
[Binomial(n^n, n): n in [1..15]]; // Vincenzo Librandi, Apr 22 2011
-
Table[Binomial[n^n,n],{n,12}]
Comments