cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A240553 Greatest prime factor of n^10+1.

Original entry on oeis.org

2, 41, 1181, 61681, 9161, 6781, 4021, 1321, 42521761, 27961, 212601841, 85403261, 641, 1383881, 131381, 4278255361, 63541, 145501, 16936647121, 222361, 920421641, 150901, 272341, 1801385941, 632133361, 208518605101, 47763361, 84961, 470925821, 12109381
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^10 + 1][[-1, 1]], {n, 100}]

A125256 Smallest odd prime divisor of n^2 + 1.

Original entry on oeis.org

5, 5, 17, 13, 37, 5, 5, 41, 101, 61, 5, 5, 197, 113, 257, 5, 5, 181, 401, 13, 5, 5, 577, 313, 677, 5, 5, 421, 17, 13, 5, 5, 13, 613, 1297, 5, 5, 761, 1601, 29, 5, 5, 13, 1013, 29, 5, 5, 1201, 41, 1301, 5, 5, 2917, 17, 3137, 5, 5, 1741, 13, 1861, 5, 5, 17, 2113, 4357, 5, 5
Offset: 2

Views

Author

Nick Hobson, Nov 26 2006

Keywords

Comments

Any odd prime divisor of n^2+1 is congruent to 1 modulo 4.
n^2+1 is never a power of 2 for n > 1; hence a prime divisor congruent to 1 modulo 4 always exists.
a(n) = 5 if and only if n is congruent to 2 or -2 modulo 5.
If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017

Examples

			The prime divisors of 8^2 + 1 = 65 are 5 and 13, so a(7) = 5.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.

Crossrefs

Programs

  • Maple
    with(numtheory, factorset);
    A125256 := proc(n) local t1,t2;
    if n <= 1 then return(-1); fi;
    if (n mod 5) = 2 or (n mod 5) = 3 then return(5); fi;
    t1 := numtheory[factorset](n^2+1);
    t2:=sort(convert(t1,list));
    if (n mod 2) = 1 then return(t2[2]); fi;
    t2[1];
    end;
    [seq(A125256(n),n=1..40)]; # N. J. A. Sloane, Nov 04 2017
  • Mathematica
    Table[Select[First/@FactorInteger[n^2+1],OddQ][[1]],{n,2,68}] (* James C. McMahon, Dec 16 2024 *)
  • PARI
    vector(68, n, if(n<2, "-", factor(n^2+1)[1+(n%2),1]))
    
  • PARI
    A125256(n)=factor(n^2+1)[1+bittest(n,0),1] \\ M. F. Hasler, Nov 06 2017

A223702 Irregular triangle of numbers k such that A002313(n), the n-th prime not congruent to 3 mod 4 is the largest prime factor of k^2 + 1.

Original entry on oeis.org

1, 2, 3, 7, 5, 8, 18, 57, 239, 4, 13, 21, 38, 47, 268, 12, 17, 41, 70, 99, 157, 307, 6, 31, 43, 68, 117, 191, 302, 327, 882, 18543, 9, 32, 73, 132, 278, 378, 829, 993, 2943, 23, 30, 83, 182, 242, 401, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that primes of the form 4x+3 are not divisors.

Examples

			Irregular triangle:
   p | {k}
-----+---------------------------------
   2 | {1},
   5 | {2, 3, 7},
  13 | {5, 8, 18, 57, 239},
  17 | {4, 13, 21, 38, 47, 268},
  29 | {12, 17, 41, 70, 99, 157, 307},
  37 | {6, 31, 43, 68, 117, 191, 302, 327, 882, 18543},
  41 | {9, 32, 73, 132, 278, 378, 829, 993, 2943}
  ...
		

Crossrefs

Cf. A002313, A014442, A177979 (first terms), A185389 (last terms), A223705, A285283, A379346 (row lengths), A379347 (row sums).
Cf. A223701, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 + 1][[-1,1]], {n, 10^5}]; Table[Flatten[Position[t, Prime[n]]], {n, 13}]

Extensions

Definition amended by Andrew Howroyd, Dec 22 2024

A285283 Number of integers x such that the greatest prime factor of x^2 + 1 is at most A002313(n), the n-th prime not congruent to 3 mod 4.

Original entry on oeis.org

1, 4, 9, 15, 22, 32, 41, 57, 74, 94, 120, 156, 192, 232, 278, 325, 381, 448, 521, 607, 704, 811
Offset: 1

Views

Author

Tomohiro Yamada, Apr 16 2017

Keywords

Comments

In other words, x^2 + 1 is A002313(n)-smooth.
Størmer shows that the number of such integers is finite for any n.
a(n) <= 3^n - 2^n follows from Størmer's argument.
a(n) <= (2^n-1)*(A002313(n)+1)/2 is implicit in Lehmer 1964.
Luca 2004 determines all integers x such that x^2 + 1 is 100-smooth, which is pushed to 200 by Najman 2010.

Crossrefs

Equivalents for x(x+1): A145604.
Cf. A002313, A014442, A185389, A223702, A285282, A379346 (first differences).

Extensions

a(13)-a(22) added by Andrew Howroyd, Dec 22 2024

A164314 Largest prime factor of n^2 - 2.

Original entry on oeis.org

2, 7, 7, 23, 17, 47, 31, 79, 7, 17, 71, 167, 97, 223, 127, 41, 23, 359, 199, 439, 241, 31, 41, 89, 337, 727, 23, 839, 449, 137, 73, 1087, 577, 1223, 647, 1367, 103, 31, 47, 73, 881, 1847, 967, 17, 151, 2207, 1151, 2399, 1249, 113, 193, 401, 47, 3023, 1567, 191
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> max(numtheory[factorset](n^2-2)):
    seq(a(n), n=2..60);  # Alois P. Heinz, Jul 22 2017
  • Mathematica
    Table[FactorInteger[n^2 - 2][[-1, 1]], {n, 2, 57}] (* Michael De Vlieger, Jul 22 2017 *)
  • PARI
    a(n) = vecmax(factor(n^2-2)[,1]); \\ Michel Marcus, Jul 22 2017

Formula

a(n) = A006530(A008865(n)).

Extensions

Offset corrected by R. J. Mathar, Aug 21 2009

A240549 Greatest prime factor of n^6+1.

Original entry on oeis.org

2, 13, 73, 241, 601, 97, 181, 109, 6481, 9901, 1117, 20593, 28393, 1033, 3877, 673, 83233, 457, 769, 12277, 3181, 1489, 7549, 577, 390001, 2521, 530713, 47221, 421, 809101, 922561, 1321, 91141, 1249, 5413, 1678321, 144061, 2083693, 2311921, 41941, 1993, 4621
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^6 + 1][[-1, 1]], {n, 100}]

A285282 Numbers n such that n^2 + 1 is 13-smooth.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 18, 57, 239
Offset: 1

Views

Author

Tomohiro Yamada, Apr 16 2017

Keywords

Comments

Equivalently: Numbers n such that all prime factors of n^2 + 1 are <= 13.
Since an odd prime factor of n^2 + 1 must be of the form 4m + 1, n^2 + 1 must be of the form 2*5^a*13^b.
This sequence is complete by a theorem of Størmer.
The largest instance 239^2 + 1 = 2*13^4 also gives the only nontrivial solution for x^2 + 1 = 2y^4 (Ljunggren).

Examples

			For n = 8, a(8)^2 + 1 = 57^2 + 1 = 3250 = 2*5^3*13.
		

References

  • W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = 2y^4, Avh. Norsk Vid. Akad. Oslo. 1(5) (1942), 1--27.

Crossrefs

Cf. A014442, A252493 (n(n+1) instead of n^2 + 1).

Programs

  • Mathematica
    Select[Range[1000], FactorInteger[#^2 + 1][[-1, 1]] <= 13&] (* Jean-François Alcover, May 17 2017 *)
  • PARI
    for(n=1, 9e6, if(vecmax(factor(n^2+1)[, 1])<=13, print1(n", ")))
    
  • Python
    from sympy import primefactors
    def ok(n): return max(primefactors(n**2 + 1))<=13 # Indranil Ghosh, Apr 16 2017

A240550 Greatest prime factor of n^7+1.

Original entry on oeis.org

2, 43, 547, 113, 449, 197, 911, 5419, 16493, 909091, 1623931, 13063, 22079, 7027567, 10678711, 15790321, 22796593, 32222107, 226871, 10529, 81867661, 86969, 2969, 183458857, 234750601, 59011, 2269, 35771, 574995877, 1118041, 71821, 86171, 219409, 104119, 11831
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^7 + 1][[-1, 1]], {n, 100}]

A240551 Greatest prime factor of n^8+1.

Original entry on oeis.org

2, 257, 193, 65537, 11489, 98801, 169553, 673, 21523361, 5882353, 6304673, 260753, 407865361, 16097, 179953, 6700417, 184417, 113607841, 563377, 1505882353, 300673, 3227992561, 623009, 2311681, 29423041, 57734881, 769, 22223646961, 561377, 4855073
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^8 + 1][[-1, 1]], {n, 100}]

A240552 Greatest prime factor of n^9+1.

Original entry on oeis.org

2, 19, 37, 109, 5167, 46441, 117307, 87211, 530713, 52579, 590077, 1801, 937, 132049, 811, 38737, 5653, 465841, 236377, 69481, 613, 5966803, 1117, 7561, 6597973, 102966067, 19927, 102547, 10435069, 120871, 1538083, 18837001, 221401, 745903, 612740917, 55117
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^9 + 1][[-1, 1]], {n, 100}]
  • PARI
    a(n) = vecmax(factor(n^9+1)[,1]); \\ Michel Marcus, Dec 17 2017
Previous Showing 11-20 of 46 results. Next