cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A105579 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 3, a(2) = 4.

Original entry on oeis.org

1, 3, 4, 1, -4, -3, 8, 17, 4, -27, -32, 25, 92, 45, -136, -223, 52, 501, 400, -599, -1396, -195, 2600, 2993, -2204, -8187, -3776, 12601, 20156, -5043, -45352, -35263, 55444, 125973, 15088, -236855, -267028, 206685, 740744, 327377, -1154108, -1808859, 499360, 4117081, 3118364, -5115795, -11352520
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: famseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Cf. Equals (1/2) [A107920(n+4) - 2*A107920(n-1) + 3 ].

Programs

  • Mathematica
    Table[(3 - ((1-I*Sqrt[7])^n + (1+I*Sqrt[7])^n)/2^n)/2 // Simplify, {n, 1, 50}] (* Jean-François Alcover, Jun 04 2017 *)

Formula

a(n+1) - a(n) = A002249(n).
a(n) = 2*a(n-1)-3*a(n-2)+2*a(n-3). G.f.: (1+x+x^2)/((1-x)*(1-x+2*x^2)). [Colin Barker, Mar 27 2012]

Extensions

Corrected by T. D. Noe, Nov 07 2006

A222588 Composites of the form 2^n-1 or 2^n+1 that are non-multiples of 3.

Original entry on oeis.org

65, 511, 1025, 2047, 4097, 16385, 32767, 262145, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 4294967297, 8589934591, 17179869185, 34359738367, 68719476737, 137438953471, 274877906945
Offset: 0

Views

Author

Walter Nissen, Feb 25 2013

Keywords

Comments

Half the numbers of the proper form are divisible by 3 and thus excluded.
For 2^n-1, n must be odd to be in this sequence.
For 2^n+1, n must be even to be in this sequence.

Examples

			31 = 2^5-1 is prime and thus not a member of the sequence.
65 = 2^6+1 has 2 proper divisors, 5 and 13, thus is a(0) in the sequence.
		

References

  • Oystein Ore, Number Theory and Its History, McGraw-Hill, 1948, reprinted 1988, section 4-7, pp 69-75.

Crossrefs

Subsequence of both A014551 and A166977.

Programs

  • Mathematica
    t = 2^Range[50]; u = Union[t - 1, t + 1]; Select[u, # > 1 && Mod[#, 3] != 0 && ! PrimeQ[#] &] (* T. D. Noe, Feb 26 2013 *)

A274817 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3, a(0)=1, a(1)=-1, a(2)=4, a(3)=8.

Original entry on oeis.org

1, -1, 4, 8, 19, 32, 64, 125, 256, 512, 1027, 2048, 4096, 8189, 16384, 32768, 65539, 131072, 262144, 524285, 1048576, 2097152, 4194307, 8388608, 16777216, 33554429, 67108864, 134217728, 268435459, 536870912, 1073741824, 2147483645, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Jul 07 2016

Keywords

Comments

a(n) mod 9 = 1, 8, 4, 8, 1, 5, 1, 8, 4, 8, 1, 5, ... (repeat).
Difference table for a(n):
1, -1, 4, 8, 19, 32, ...
-2, 5, 4, 11, 13, 32, ...
7, -1, 7, 2, 19, 29, ...
-8, 8, -5, 17, 10, 41, ...
16, -13, 22, -7, 31, 14, ...
-29, 35, -29, 38, -17, 65, ...
... .
The recurrence of the name is valid for every line and the main diagonal which is in A014551.

Crossrefs

Programs

  • Maple
    A274817:=n->2^n - sin(n*Pi/3)*(sqrt(3) + 2*sin(2*n*Pi/3)): seq(A274817(n), n=0..40); # Wesley Ivan Hurt, Jul 07 2016
  • Mathematica
    Table[2^n - Sin[n*Pi/3] (Sqrt[3] + 2 Sin[2*n*Pi/3]), {n, 0, 40}] (* Wesley Ivan Hurt, Jul 07 2016 *)
    LinearRecurrence[{2, 0, -1, 2}, {1, -1, 4, 8}, 100] (* G. C. Greubel, Jul 07 2016 *)
  • PARI
    Vec((x^3+6*x^2-3*x+1)/(-2*x^4+x^3-2*x+1) + O(x^40)) \\ Colin Barker, Jul 07 2016

Formula

G.f.: (x^3+6*x^2-3*x+1) / (-2*x^4+x^3-2*x+1). - Colin Barker, Jul 07 2016
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3. - Wesley Ivan Hurt, Jul 07 2016
a(n) = 2^n - sin(n*Pi/3)*(sqrt(3) + 2*sin(2*n*Pi/3)). - Wesley Ivan Hurt, Jul 07 2016
a(n) = 2^n - period 6: repeat [0, 3, 0, 0, -3, 0].
a(n+1) = 2*a(n) + period 6: repeat [-3, 6, 0, 3, -6, 0].
a(n+3) = -a(n) + 9*2^n.
a(n) = A014551(n) - A057079(n).

Extensions

One term corrected and more terms added by Colin Barker, Jul 07 2016

A321483 a(n) = 7*2^n + (-1)^n.

Original entry on oeis.org

8, 13, 29, 55, 113, 223, 449, 895, 1793, 3583, 7169, 14335, 28673, 57343, 114689, 229375, 458753, 917503, 1835009, 3670015, 7340033, 14680063, 29360129, 58720255, 117440513, 234881023, 469762049, 939524095, 1879048193, 3758096383, 7516192769, 15032385535
Offset: 0

Views

Author

Paul Curtz, Nov 11 2018

Keywords

Comments

Difference table:
8, 13, 29, 55, 113, 223, 449, ...
5, 16, 26, 58, 110, 226, 446, 898, ...
11, 10, 32, 52, 116, 220, 452, 892, 1796, ...
-1, 22, 20, 64, 104, 232, 440, 904, 1784, 3592, ...
-2, 44, 40, 128, 208, 464, 880, 1808, 3568, 7184, ...
etc.
Every diagonal is a sequence of the form k*2^m.
a(n) is divisible by
. 5 if n is a term of A004767,
. 11 if n is a term of A016885,
. 13 if n is a term of A017533.

Crossrefs

Programs

  • Mathematica
    a[n_] := 7*2^n + (-1)^n ; Array[a, 32, 0] (* Amiram Eldar, Nov 12 2018 *)
    CoefficientList[Series[E^-x + 7 E^(2 x), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 12 2018 *)
    LinearRecurrence[{1,2},{8,13},40] (* Harvey P. Dale, Mar 18 2022 *)
  • PARI
    Vec((8 + 5*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 11 2018

Formula

O.g.f.: (8 + 5*x) / ((1 + x)*(1 - 2*x)). - Colin Barker, Nov 11 2018
E.g.f.: exp(-x) + 7*exp(2*x). - Stefano Spezia, Nov 12 2018
a(n) = a(n-1) + 2*a(n-2).
a(n) = 2*a(n-1) + 3*(-1)^n for n>0, a(0)=8.
a(2*k) = 7*4^k + 1, a(2*k+1) = 14*4^k - 1.
a(n) = A014551(n) + A014551(n-1) + A014551(n-2).
a(n) = 2^(n+3) - 3*A001045(n).
a(n) mod 9 = A070366(n+3).
a(n) + a(n+1) = 21*2^n.

Extensions

Two terms corrected, and more terms added by Colin Barker, Nov 11 2018

A083421 a(n)=2*5^n-2^n.

Original entry on oeis.org

1, 8, 46, 242, 1234, 6218, 31186, 156122, 780994, 3905738, 19530226, 97654202, 488277154, 2441398058, 12207014866, 61035123482, 305175715714, 1525878775178, 7629394269106, 38146972131962, 190734862232674
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Third binomial transform of A014551(n+1)

Programs

  • Mathematica
    Table[2*5^n-2^n,{n,0,20}] (* or *) LinearRecurrence[{7,-10},{1,8},30] (* Harvey P. Dale, Dec 03 2015 *)

Formula

G.f.: (1+x)/((1-2x)(1-5x));
e.g.f.: 2exp(5x)-exp(2x).
a(0)=1, a(1)=8, a(n)=7*a(n-1)-10*a(n-2). - Harvey P. Dale, Dec 03 2015

A105580 a(n+3) = a(n) - a(n+1) - a(n+2); a(0) = -5, a(1) = 6, a(2) = 0.

Original entry on oeis.org

-5, 6, 0, -11, 17, -6, -22, 45, -29, -38, 112, -103, -47, 262, -318, 9, 571, -898, 336, 1133, -2367, 1570, 1930, -5867, 5507, 2290, -13664, 16881, -927, -29618, 47426, -18735, -58309, 124470, -84896, -97883, 307249, -294262, -110870, 712381, -895773, 72522, 1535632, -2503927, 1040817, 2998742
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2tesforseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e], 1vesforseq = A000004, ForType: 1A.

Examples

			This sequence was generated using the same floretion which generated the sequences A105577, A105578, A105579, etc.. However, in this case a force transform was applied. [Specifically, (a(n)) may be seen as the result of a tesfor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.]
		

Crossrefs

Programs

  • Mathematica
    Transpose[NestList[Join[Rest[#],ListCorrelate[ {1,-1,-1}, #]]&,{-5,6,0},50]][[1]]  (* Harvey P. Dale, Mar 14 2011 *)
    CoefficientList[Series[(5-x-x^2)/(x^3-x^2-x-1),{x,0,50}],x]  (* Harvey P. Dale, Mar 14 2011 *)

Formula

G.f. (5-x-x^2)/(x^3-x^2-x-1)
a(n) = A078046(n-1) - A073145(n+3).
a(n) = -5*A057597(n+2) + A057597(n+1)+A057597(n). - R. J. Mathar, Oct 25 2022

A140252 Inverse binomial transform of A140420.

Original entry on oeis.org

0, 1, 1, 7, 7, 31, 31, 127, 127, 511, 511, 2047, 2047, 8191, 8191, 32767, 32767, 131071, 131071, 524287, 524287, 2097151, 2097151, 8388607, 8388607, 33554431, 33554431, 134217727, 134217727, 536870911, 536870911
Offset: 0

Views

Author

Paul Curtz, Jun 23 2008

Keywords

Comments

Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 23 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{1,4,-4},{1,1,7},30]] (* Harvey P. Dale, May 28 2012 *)

Formula

a(2n+1) = a(2n+2)= A083420(n).
a(n+1)-2a(n) = (-1)^n*A014551(n), n>0.
a(n+1)-2a(n)-1 = 2*(-1)^n*A131577(n).
O.g.f.: x(1+2x^2)/((2x-1)(1+2x)(x-1)). - R. J. Mathar, Aug 02 2008
a(n) = a(n-1)+4*a(n-2)-4*a(n-3), a(0)=0, a(1)=1, a(2)=1, a(3)=7. - Harvey P. Dale, May 28 2012

Extensions

Edited and extended by R. J. Mathar, Aug 02 2008

A140430 Period 6: repeat [3, 2, 4, 1, 2, 0].

Original entry on oeis.org

3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2, 4, 1, 2, 0, 3, 2
Offset: 0

Views

Author

Paul Curtz, Jun 25 2008

Keywords

Comments

Associate to sequence identical to half its p-th differences.
Corresponding n-th differences table:
3, 2, 4, 1, 2, 0, 3;
-1, 2, -3, 1, -2, 3, -1;
3, -5, 4, -3, 5, -4, 3;
-8, 9, -7, 8, -9, 7, -8;
17, -16, 15, -17, 16, -15, 17;
-33, 31, -32, 33, -31, 32, -33;
64, -63, 65, -64, 63, -65, 64;
Note that the main diagonal is 3 followed by A000079(n+1).
Note also the southeast diagonal 4, 1, 5, 7, 17 is 4 followed by A014551(n+1).
Note also 3*A001045(n+1), one signed and one unsigned, in two southeast diagonals.
Starting from second line, the first column is A130750 signed.
Starting from second line, the second column is A130752 signed.
Starting from second line, the third column is A130755 signed.

Crossrefs

Cf. A000079 (2^n), A001045 (Jacobsthal), A014551 (Jacobsthal-Lucas).

Programs

Formula

From Wesley Ivan Hurt, Aug 29 2014: (Start)
G.f.: (3-x+2*x^2)/((1-x)*(1+x^3)).
a(n) = a(n-1)-a(n-3)+a(n-4);
a(n) = 2 + ((-n-2) mod 3) * (-1)^n. (End)
a(n) = (6 + 3*cos(n*Pi) + 2*sqrt(3)*sin(n*Pi/3))/3. - Wesley Ivan Hurt, Jun 20 2016

Extensions

More terms from Wesley Ivan Hurt, Aug 29 2014

A280173 a(0) = 1, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [5, -4].

Original entry on oeis.org

1, 7, 10, 25, 46, 97, 190, 385, 766, 1537, 3070, 6145, 12286, 24577, 49150, 98305, 196606, 393217, 786430, 1572865, 3145726, 6291457, 12582910, 25165825, 50331646, 100663297, 201326590, 402653185, 805306366, 1610612737, 3221225470, 6442450945, 12884901886
Offset: 0

Views

Author

Paul Curtz, Dec 28 2016

Keywords

Comments

a(n) mod 9 = period 2: repeat [1, 7].
The last digit from 7 is of period 4: repeat [7, 0, 5, 6].
The bisection A096045 = 1, 10, 46, ... is based on Bernoulli numbers.
a(n) is a companion to A051049(n).
With an initial 0, A051049(n) is an autosequence of the first kind.
With an initial 2, this sequence is an autosequence of the second kind.
See the reference.
Difference table:
1, 7, 10, 25, 46, 97, ... = this sequence.
6, 3, 15, 21, 51, 93, ... = 3*A014551(n)
-3, 12, 6, 30, 42, 102, ... = -3 followed by 6*A014551(n).
The main diagonal of the difference table gives A003945: 1, 3, 6, 12, 24, ...

Examples

			a(0) = 1, a(1) = 2*1 + 5 = 7, a(2) = 2*7 - 4 = 10, a(3) = 2*10 + 5 = 25.
		

Crossrefs

Programs

  • Maple
    seq(3*2^n-(-1)^n*(1+irem(n+1,2)),n=0..32); # Peter Luschny, Dec 29 2016
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,7,10},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 28 2016

Formula

a(2n) = 3*4^n - 2, a(2n+1) = 6*4^n + 1.
a(n+2) = a(n) + 9*2^n, a(0) = 1, a(1) = 7.
a(n) = 2*A051049(n+1) - A051049(n).
From Colin Barker, Dec 28 2016: (Start)
a(n) = 3*2^n - 2 for n even.
a(n) = 3*2^n + 1 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2.
G.f.: (1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)

A281166 a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) for n>2, a(0)=a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 8, 17, 33, 64, 127, 255, 512, 1025, 2049, 4096, 8191, 16383, 32768, 65537, 131073, 262144, 524287, 1048575, 2097152, 4194305, 8388609, 16777216, 33554431, 67108863, 134217728, 268435457, 536870913, 1073741824, 2147483647, 4294967295, 8589934592
Offset: 0

Views

Author

Paul Curtz, Jan 16 2017

Keywords

Comments

a(n) is the first sequence on three (with its first and second differences):
1, 1, 3, 8, 17, 33, 64, 127, ...;
0, 2, 5, 9, 16, 31, 63, 128, ..., that is 0 followed by A130752;
2, 3, 4, 7, 15, 32, 65, 129, ..., that is 2 followed by A130755;
1, 1, 3, 8, 17, 33, 64, 127, ..., this sequence.
The main diagonal is 2^n.
The sum of the first three lines is 3*2^n.
Alternated sum and subtraction of a(n) and its inverse binomial transform (period 3: repeat [1, 0, 2]) gives the autosequence of the first kind b(n):
0, 1, 1, 9, 17, 35, 63, 127, ...
1, 0, 8, 8, 18, 28, 64, 126, ...
-1, 8, 0, 10, 10, 36, 62, 134, ...
9, -8, 10, 0, 26, 26, 72, 118, ... .
The main diagonal is 0's. The first two upper diagonals are A259713.
The sum of the first three lines gives 9*A001045.
a(n) mod 9 gives a periodic sequence of length 6: repeat [1, 1, 3, 8, 8, 6].
a(n) = A130750(n-1) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    LinearRecurrence[{3, -3, 2}, {1, 1, 3}, 30] (* Jean-François Alcover, Jan 16 2017 *)
  • PARI
    Vec((1 - 2*x + 3*x^2) / ((1 - 2*x)*(1 - x + x^2)) + O(x^40)) \\ Colin Barker, Jan 16 2017
    

Formula

Binomial transform of the sequence of length 3: repeat [1, 0, 2].
a(n+3) = -a(n) + 9*2^n.
a(n) = 2^n - periodic 6: repeat [0, 1, 1, 0, -1, -1, 0].
a(n+6) = a(n) + 63*2^n.
a(n+1) = 2*a(n) - period 6: repeat [1, -1, -2, -1, 1, 2].
a(n) = 2^n - 2*sin(Pi*n/3)/sqrt(3). - Jean-François Alcover and Colin Barker, Jan 16 2017
G.f.: (1 - 2*x + 3*x^2)/((1 - 2*x)*(1 - x + x^2)). - Colin Barker, Jan 16 2017
Previous Showing 31-40 of 60 results. Next