cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A046004 Discriminants of imaginary quadratic fields with class number 7 (negated).

Original entry on oeis.org

71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6000], NumberFieldClassNumber[Sqrt[-#]] == 7 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 7};
    for(n=1, 6000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..6000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==7] # G. C. Greubel, Mar 01 2019

A046006 Discriminants of imaginary quadratic fields with class number 9 (negated).

Original entry on oeis.org

199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579, 2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363, 4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563, 8803, 9067, 10627
Offset: 1

Views

Author

Keywords

Comments

The class group of Q[sqrt(-4027)] is isomorphic to C_3 X C_3. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_9. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[10700], NumberFieldClassNumber[Sqrt[-#]] == 9 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 9};
    for(n=1, 11000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==9] # G. C. Greubel, Mar 01 2019

A046018 Discriminants of imaginary quadratic fields with class number 21 (negated).

Original entry on oeis.org

431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371, 4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907, 8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811, 9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291
Offset: 1

Views

Author

Keywords

Comments

85 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 14000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 21, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A351680 Discriminants of imaginary quadratic fields with class number 42 (negated).

Original entry on oeis.org

1959, 2183, 2911, 3039, 3176, 3687, 3831, 4039, 4103, 4184, 4735, 4904, 4952, 5288, 5935, 5959, 6179, 6452, 6487, 6611, 6623, 6632, 6836, 7447, 7604, 7811, 7892, 7988, 8459, 8552, 8579, 8744, 8852, 9368, 9428, 9607, 10231, 10643, 10772, 10996, 11023, 11099
Offset: 1

Views

Author

Andy Huchala, Mar 28 2022

Keywords

Comments

Sequence contains 339 terms; largest is 280267.
The class group of Q[sqrt(-d)] is isomorphic to C_42 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 42]

A046016 Discriminants of imaginary quadratic fields with class number 19 (negated).

Original entry on oeis.org

311, 359, 919, 1063, 1543, 1831, 2099, 2339, 2459, 3343, 3463, 3467, 3607, 4019, 4139, 4327, 5059, 5147, 5527, 5659, 6803, 8419, 8923, 8971, 9619, 10891, 11299, 15091, 15331, 16363, 16747, 17011, 17299, 17539, 17683, 19507, 21187, 21211, 21283, 23203, 24763, 26227, 27043, 29803, 31123, 37507, 38707
Offset: 1

Views

Author

Keywords

Comments

47 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[ n = 1, n < 40000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 19, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A046005 Discriminants of imaginary quadratic fields with class number 8 (negated).

Original entry on oeis.org

95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204
Offset: 1

Views

Author

Keywords

Comments

131 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6400], NumberFieldClassNumber[Sqrt[-#]] == 8 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 8} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..6500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==8] # G. C. Greubel, Mar 01 2019

A046012 Discriminants of imaginary quadratic fields with class number 15 (negated).

Original entry on oeis.org

239, 439, 751, 971, 1259, 1327, 1427, 1567, 1619, 2243, 2647, 2699, 2843, 3331, 3571, 3803, 4099, 4219, 5003, 5227, 5323, 5563, 5827, 5987, 6067, 6091, 6211, 6571, 7219, 7459, 7547, 8467, 8707, 8779, 9043, 9907, 10243, 10267, 10459, 10651
Offset: 1

Views

Author

Keywords

Comments

68 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 12000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 15, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A081319 Smallest squarefree integer k such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.

Original entry on oeis.org

1, 5, 23, 14, 47, 26, 71, 41, 199, 74, 167, 89, 191, 101, 239, 146, 383, 293, 311, 194, 431, 269, 647, 329, 479, 314, 983, 341, 887, 461, 719, 446, 839, 614, 1031, 626, 1487, 1199, 1439, 689, 1151, 794, 1847, 854, 1319, 941, 3023, 1106, 1511, 1109, 1559
Offset: 1

Views

Author

Dean Hickerson, Mar 18 2003

Keywords

Examples

			From _Jianing Song_, May 08 2021: (Start)
a(6) = min{A060649(6), A344072(3)/4} = min{87, 104/4} = 26.
a(12) = min{A060649(12), A344072(6)/4} = min{231, 356/4} = 89.
a(18) = min{A060649(12), A344072(9)/4} = min{335, 1172/4} = 293.
a(38) = min{A060649(38), A344072(19)/4} = min{1199, 4916/4} = 1199. (End)
		

Crossrefs

Programs

Formula

a(n) = A060649(n) for odd n > 1. For even n, assuming that A060649(n) > 0 and A344072(n/2) > 0, a(n) = min{A060649(n), A344072(n/2)/4}. - Jianing Song, May 08 2021

Extensions

Edited by Max Alekseyev, Apr 28 2010
Escape clause added by Jianing Song, May 08 2021

A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).

Original entry on oeis.org

167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 15000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 11, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 11};
    for(n=1, 16000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..16000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==11] # G. C. Greubel, Mar 01 2019

Extensions

a(40)-a(41) from Giovanni Resta, Mar 20 2013
Previous Showing 11-20 of 51 results. Next