cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A046010 Discriminants of imaginary quadratic fields with class number 13 (negated).

Original entry on oeis.org

191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131, 2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347, 5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827, 11923, 12043, 14347, 15787, 16963, 20563
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 21000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 13, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A046014 Discriminants of imaginary quadratic fields with class number 17 (negated).

Original entry on oeis.org

383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447, 4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539, 8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947, 16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243, 26083, 26107, 27763, 31627, 33427, 36523, 37123
Offset: 1

Views

Author

Keywords

Comments

45 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 40000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 17, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A048925 Discriminants of imaginary quadratic fields with class number 24 (negated).

Original entry on oeis.org

695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 24, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(),QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 24] # Andy Huchala, Feb 15 2022

A046003 Discriminants of imaginary quadratic fields with class number 6 (negated).

Original entry on oeis.org

87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[3800], NumberFieldClassNumber[Sqrt[-#]] == 6 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 6};
    for(n=1, 4000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==6] # G. C. Greubel, Mar 01 2019

Extensions

More terms from Seiichi Manyama, Jun 03 2018

A046007 Discriminants of imaginary quadratic fields with class number 10 (negated).

Original entry on oeis.org

119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028
Offset: 1

Views

Author

Keywords

Comments

87 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[14000], NumberFieldClassNumber[Sqrt[-#]] == 10 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 10} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==10] # G. C. Greubel, Mar 01 2019

A046009 Discriminants of imaginary quadratic fields with class number 12 (negated).

Original entry on oeis.org

231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732
Offset: 1

Views

Author

Keywords

Comments

206 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 2000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 12, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 12} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==12] # G. C. Greubel, Mar 01 2019

A046011 Discriminants of imaginary quadratic fields with class number 14 (negated).

Original entry on oeis.org

215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988
Offset: 1

Views

Author

Keywords

Comments

There are 95 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 14, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 14} \\ Andrew Howroyd, Jul 24 2018

A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).

Original entry on oeis.org

399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072
Offset: 1

Views

Author

Keywords

Comments

322 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018

A046015 Discriminants of imaginary quadratic fields with class number 18 (negated).

Original entry on oeis.org

335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899
Offset: 1

Views

Author

Keywords

Comments

The class group of Q[sqrt(-d)] is isomorphic to C_3 X C_6 for d = 9748, 12067, 16627, 17131, 19651, 22443, 23683, 34027, 34507. For all other known d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_18. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 6000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 18, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A123563 Discriminants of imaginary quadratic fields with class number 20 (negated).

Original entry on oeis.org

455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284, 1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748, 1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360, 2404, 2407, 2483, 2487, 2532, 2552
Offset: 1

Views

Author

Eric W. Weisstein, Nov 19 2006

Keywords

Comments

A finite sequence with exactly 350 terms.

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 20, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
Previous Showing 21-30 of 51 results. Next