cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 191 results. Next

A303390 Expansion of Product_{k>=1} (1 + 3*x^k)/(1 - 3*x^k).

Original entry on oeis.org

1, 6, 24, 96, 330, 1104, 3552, 11184, 34584, 105990, 322224, 975264, 2942016, 8857680, 26631312, 80005632, 240219114, 721036320, 2163789816, 6492625152, 19480105392, 58444390176, 175340344416, 526034008752, 1578124753152, 4734415061142, 14203316252400
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+3*x^k)/(1-3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = QPochhammer[-1, 1/3] / QPochhammer[1/3] = 5.5877920355220979147599292926505407983327527...

A303438 Expansion of Product_{k>=1} ((1 + 2^k*x^k)/(1 - 2^k*x^k))^(1/2^k).

Original entry on oeis.org

1, 2, 4, 10, 18, 38, 80, 158, 292, 630, 1260, 2470, 4922, 9706, 19392, 41010, 78466, 155494, 318764, 625670, 1238854, 2567666, 5106208, 10122522, 20022960, 40082154, 80027140, 163330106, 324201942, 643489014, 1306843568, 2592220110, 5081546084
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2018

Keywords

Comments

a(n) / 2^n tends to 1.2036... - Vaclav Kotesovec, Apr 25 2018

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 2^k*x^k)/(1 - 2^k*x^k))^(1/2^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 24 2018 *)
    nmax = 30; CoefficientList[Series[Exp[Sum[((-1)^j - 1) / (j*(1 - 1/(2^(j - 1)*x^j))), {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(prod(k=1, N, ((1+2^k*x^k)/(1-2^k*x^k))^(1/2^k)))

Formula

G.f.: exp( Sum_{j>=1} ((-1)^j - 1) / (j*(1 - 1/(2^(j-1)*x^j))) ). - Vaclav Kotesovec, Apr 25 2018

A305101 G.f.: Sum_{k>=1} x^k/(1+x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 2, 6, 11, 22, 40, 70, 116, 191, 304, 474, 726, 1094, 1624, 2384, 3453, 4950, 7030, 9890, 13798, 19108, 26264, 35858, 48652, 65615, 87996, 117396, 155826, 205854, 270728, 354506, 462306, 600544, 777184, 1002180, 1287889, 1649578, 2106152, 2680924
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A209423 and A000009.
Convolution of A015723 and A000041.
Convolution of A048272 and A015128.
a(n) is the number of overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1+x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(sqrt(n)*Pi) * log(2) / (4*Pi*sqrt(n)).
a(n) = A305122(n) + A305124(n).

A305104 G.f.: Sum_{k>=1} x^(2*k)/(1-x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 24, 44, 79, 134, 222, 358, 566, 876, 1334, 2000, 2960, 4326, 6253, 8946, 12680, 17816, 24832, 34352, 47192, 64404, 87354, 117796, 157976, 210764, 279812, 369744, 486413, 637188, 831324, 1080420, 1398968, 1805012, 2320992, 2974728, 3800618
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution A066898 of and A000009.
Convolution A090867 of and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1-x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A305105 G.f.: Sum_{k>=1} x^(2*k-1)/(1-x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 64, 114, 195, 325, 526, 832, 1292, 1970, 2958, 4384, 6413, 9276, 13283, 18836, 26478, 36924, 51096, 70210, 95844, 130019, 175350, 235192, 313802, 416618, 550540, 724250, 948719, 1237732, 1608508, 2082600, 2686857, 3454590, 4427144, 5655652
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A066897 and A000009.
Convolution of A067588 and A000041.
Let A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 - x^k). Then A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 + x^k - 2*x^k) == Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) (mod 2). It follows from the comment in A001227 by Juri-Stepan Gerasimov, dated Jul 17 2016, that a(n) is odd iff n is a square or twice a square. - Peter Bala, Jan 10 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1-x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(16*n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A316723 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j=1..k} (1+x^j)/(1-x^j).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 2, 4, 2, 0, 1, 2, 4, 6, 2, 0, 1, 2, 4, 8, 8, 2, 0, 1, 2, 4, 8, 12, 10, 2, 0, 1, 2, 4, 8, 14, 18, 12, 2, 0, 1, 2, 4, 8, 14, 22, 26, 14, 2, 0, 1, 2, 4, 8, 14, 24, 34, 34, 16, 2, 0, 1, 2, 4, 8, 14, 24, 38, 50, 44, 18, 2, 0, 1, 2, 4, 8, 14, 24, 40, 58, 70, 56, 20, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,  1,  1,  1, ...
   0, 2,  2,  2,  2,  2,  2, ...
   0, 2,  4,  4,  4,  4,  4, ...
   0, 2,  6,  8,  8,  8,  8, ...
   0, 2,  8, 12, 14, 14, 14, ...
   0, 2, 10, 18, 22, 24, 24, ...
   0, 2, 12, 26, 34, 38, 40, ...
		

Crossrefs

Diagonal gives A015128.

A319552 Expansion of 1/theta_4(q)^3 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 6, 24, 80, 234, 624, 1552, 3648, 8184, 17654, 36816, 74544, 147056, 283440, 535008, 990912, 1803882, 3232224, 5707624, 9943536, 17106960, 29088352, 48922320, 81438528, 134261584, 219336630, 355242288, 570675904, 909674688, 1439394192, 2261635168, 3529838208
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), this sequence (b=3), A284286 (b=4), A319553 (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004404, A213384.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^3))

Formula

Convolution inverse of A213384.
a(n) = (-1)^n * A004404(n).
a(0) = 1, a(n) = (6/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^3.

A319553 Expansion of 1/theta_4(q)^8 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 16, 144, 960, 5264, 25056, 106944, 418176, 1520784, 5201232, 16871648, 52252992, 155341248, 445226848, 1234726272, 3323392128, 8704504976, 22234655520, 55498917840, 135595345600, 324759439584, 763505859072, 1764050361152, 4009763323008, 8975341703616, 19800832628336
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), A319552 (b=3), A284286 (b=4), this sequence (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004409, A035016.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^8))

Formula

Convolution inverse of A035016.
a(n) = (-1)^n * A004409(n).
a(0) = 1, a(n) = (16/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^8.

A330505 Expansion of e.g.f. Sum_{k>=1} arctanh(x^k).

Original entry on oeis.org

1, 2, 8, 24, 144, 960, 5760, 40320, 524160, 4354560, 43545600, 638668800, 6706022400, 99632332800, 2092278988800, 20922789888000, 376610217984000, 9247873130496000, 128047474114560000, 2919482409811968000, 77852864261652480000
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcTanh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    nmax = 21; CoefficientList[Series[-Log[EllipticTheta[4, 0, x]]/2, {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[(n - 1)! DivisorSum[n, # &, OddQ[n/#] &], {n, 1, 21}]

Formula

E.g.f.: -log(theta_4(x)) / 2.
E.g.f.: (1/2) * Sum_{k>=1} log((1 + x^k) / (1 - x^k)).
E.g.f.: log(Product_{k>=1} ((1 + x^k) / (1 - x^k))^(1/2)).
E.g.f.: Sum_{k>=1} x^(2*k - 1) / ((2*k - 1) * (1 - x^(2*k - 1))).
exp(2 * Sum_{n>=1} a(n) * x^n / n!) = g.f. of A015128.
a(n) = (n - 1)! * Sum_{d|n, n/d odd} d.

A340659 The number of overpartitions of n having an equal number of overlined and non-overlined parts.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 45, 61, 85, 114, 156, 206, 276, 363, 477, 621, 808, 1041, 1339, 1713, 2182, 2769, 3501, 4409, 5534, 6927, 8635, 10741, 13316, 16467, 20303, 24980, 30643, 37518, 45815, 55836, 67889, 82395, 99772, 120609, 145501, 175229, 210637
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Examples

			a(5) = 5 counts the overpartitions [4',1], [4,1'], [3',2], [3,2'], and [2',1',1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
           add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c==0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[1 + Sum[x^(j*(j+1)/2 + j) / QPochhammer[x, x, j]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2021 *)

Formula

G.f.: Sum_{n>=0} q^(n*(n+1)/2 + n)/Product_{k=1..n} (1-q^k)^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * phi^2 * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 06 2021
a(n) = A143184(n) - A001524(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 15 2021
Previous Showing 91-100 of 191 results. Next