cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A180250 a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
    
  • Mathematica
    Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
    LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
    
  • SageMath
    A180250= BinaryRecurrenceSequence(5,10,0,1)
    [A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023

A015551 Expansion of x/(1 - 6*x - 5*x^2).

Original entry on oeis.org

0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0

Views

Author

Keywords

Comments

Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)1,2 for instance. - _Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
  • PARI
    a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004

A193376 T(n,k) = number of ways to place any number of 2 X 1 tiles of k distinguishable colors into an n X 1 grid; array read by descending antidiagonals, with n, k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 5, 1, 5, 7, 11, 8, 1, 6, 9, 19, 21, 13, 1, 7, 11, 29, 40, 43, 21, 1, 8, 13, 41, 65, 97, 85, 34, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1, 10, 17, 71, 133, 301, 441, 508, 341, 89, 1, 11, 19, 89, 176, 463, 781, 1165, 1159, 683, 144, 1, 12, 21, 109, 225, 673
Offset: 1

Views

Author

R. H. Hardin, Jul 24 2011

Keywords

Comments

Transposed variant of A083856. - R. J. Mathar, Aug 23 2011
As to the sequences by columns beginning (1, N, ...), let m = (N-1). The g.f. for the sequence (1, N, ...) is 1/(1 - x - m*x^2). Alternatively, the corresponding matrix generator is [[1,1], [m,0]]. Another equivalency is simply: The sequence beginning (1, N, ...) is the INVERT transform of (1, m, 0, 0, 0, ...). Convergents to the sequences a(n)/a(n-1) are (1 + sqrt(4*m+1))/2. - Gary W. Adamson, Feb 25 2014

Examples

			Array T(n,k) (with rows n >= 1 and column k >= 1) begins as follows:
  ..1...1....1....1.....1.....1.....1......1......1......1......1......1...
  ..2...3....4....5.....6.....7.....8......9.....10.....11.....12.....13...
  ..3...5....7....9....11....13....15.....17.....19.....21.....23.....25...
  ..5..11...19...29....41....55....71.....89....109....131....155....181...
  ..8..21...40...65....96...133...176....225....280....341....408....481...
  .13..43...97..181...301...463...673....937...1261...1651...2113...2653...
  .21..85..217..441...781..1261..1905...2737...3781...5061...6601...8425...
  .34.171..508.1165..2286..4039..6616..10233..15130..21571..29844..40261...
  .55.341.1159.2929..6191.11605.19951..32129..49159..72181.102455.141361...
  .89.683.2683.7589.17621.35839.66263.113993.185329.287891.430739.624493...
  ...
Some solutions for n = 5 and k = 3 with colors = 1, 2, 3 and empty = 0:
..0....2....3....2....0....1....0....0....2....0....0....2....3....0....0....0
..0....2....3....2....2....1....2....3....2....1....0....2....3....1....1....1
..1....0....0....0....2....0....2....3....2....1....0....1....0....1....1....1
..1....2....2....0....3....2....2....3....2....0....3....1....3....3....2....1
..0....2....2....0....3....2....2....3....0....0....3....0....3....3....2....1
		

Crossrefs

Column 1 is A000045(n+1), column 2 is A001045(n+1), column 3 is A006130, column 4 is A006131, column 5 is A015440, column 6 is A015441(n+1), column 7 is A015442(n+1), column 8 is A015443, column 9 is A015445, column 10 is A015446, column 11 is A015447, and column 12 is A053404,
Row 2 is A000027(n+1), row 3 is A004273(n+1), row 4 is A028387, row 5 is A000567(n+1), and row 6 is A106734(n+2).
Diagonal is A171180, superdiagonal 1 is A083859(n+1), and superdiagonal 2 is A083860(n+1).

Programs

  • Maple
    T:= proc(n,k) option remember; `if`(n<0, 0,
          `if`(n<2 or k=0, 1, k*T(n-2, k) +T(n-1, k)))
        end;
    seq(seq(T(n, d+1-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 2 || k == 0, 1, k*T[n-2, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. Thus, T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n = 0, 1, ..., z-1.
The solution is T(n,k) = Sum_r r^(-n-1)/(1 + z*k*r^(z-1)), where the sum is over the roots r of the polynomial k*x^z + x - 1.
For z = 2, T(n,k) = ((2*k / (sqrt(1 + 4*k) - 1))^(n+1) - (-2*k/(sqrt(1 + 4*k) + 1))^(n+1)) / sqrt(1 + 4*k).
T(n,k) = Sum_{s=0..[n/2]} binomial(n-s,s) * k^s.
For z X 1 tiles, T(n,k,z) = Sum_{s = 0..[n/z]} binomial(n-(z-1)*s, s) * k^s. - R. H. Hardin, Jul 31 2011

Extensions

Formula and proof from Robert Israel in the Sequence Fans mailing list.

A063092 a(0)=1, a(1)=2 and, for n>1, a(n) = a(n-1) + 11*a(n-2).

Original entry on oeis.org

1, 2, 13, 35, 178, 563, 2521, 8714, 36445, 132299, 533194, 1988483, 7853617, 29726930, 116116717, 443112947, 1720396834, 6594639251, 25519004425, 98060036186, 378769084861, 1457429482907, 5623889416378, 21655613728355, 83518397308513, 321730148320418
Offset: 0

Views

Author

John W. Layman, Apr 29 2003

Keywords

Comments

The binomial transform of this sequence is {(3^n)F(n+1)} where {F(n)} is the Fibonacci sequence A000045.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    LinearRecurrence[{1,11},{1,2},30] (* Harvey P. Dale, Oct 25 2020 *)
  • PARI
    { for (n=0, 200, if (n>1, a=a1 + 11*a2; a2=a1; a1=a, if (n, a=2; a2=1; a1=2, a=1)); write("b063092.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 18 2009

Formula

G.f.: (1+x)/(1-x-11*x^2). - Jaume Oliver Lafont, Sep 07 2009
a(n) = A015447(n) + A015447(n-1), n>0. - Ralf Stephan, Jul 21 2013
a(n)^2 - (3*A015447(n-1))^2 - (3*A015447(n-1))*a(n) = (-11)^n. - Philippe Deléham, Mar 17 2023

A015541 Expansion of x/(1 - 5*x - 7*x^2).

Original entry on oeis.org

0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 8, 24, 6, 6, 24, 24, 5, 24, 12, 6, 8, 12, 16, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 7*a(n-2).

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A060959 Table by antidiagonals of generalized Fibonacci numbers: T(n,k) = T(n,k-1) + n*T(n,k-2) with T(n,0)=0 and T(n,1)=1.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 5, 4, 1, 1, 0, 1, 8, 11, 7, 5, 1, 1, 0, 1, 13, 21, 19, 9, 6, 1, 1, 0, 1, 21, 43, 40, 29, 11, 7, 1, 1, 0, 1, 34, 85, 97, 65, 41, 13, 8, 1, 1, 0, 1, 55, 171, 217, 181, 96, 55, 15, 9, 1, 1, 0, 1, 89, 341, 508, 441, 301, 133, 71, 17, 10, 1, 1, 0
Offset: 0

Views

Author

Henry Bottomley, May 10 2001

Keywords

Examples

			Square array begins as:
  0, 1, 1, 1,  1,  1,  1, ...
  0, 1, 1, 2,  3,  5,  8, ...
  0, 1, 1, 3,  5, 11, 21, ...
  0, 1, 1, 4,  7, 19, 40, ...
  0, 1, 1, 5,  9, 29, 65, ...
  0, 1, 1, 6, 11, 41, 96, ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> (((1+Sqrt(1+4*k))/2)^(n-k) - ((1-Sqrt(1+4*k))/2)^(n-k))/Sqrt(1+4*k) ))); # G. C. Greubel, Jan 15 2020
  • Magma
    [Round( (((1+Sqrt(1+4*k))/2)^(n-k) - ((1-Sqrt(1+4*k))/2)^(n-k) )/Sqrt(1+4*k) ): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq(seq( round((((1+sqrt(1+4*k))/2)^(n-k) - ((1-sqrt(1+4*k))/2)^(n-k) )/sqrt(1+4*k)), k=0..n), n=0..12); # G. C. Greubel, Jan 15 2020
  • Mathematica
    T[n_, k_]:= If[n==k==0, 0, Round[(((1+Sqrt[1+4n])/2)^k - ((1-Sqrt[1+4n])/2)^k)/Sqrt[1+4n]]]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    T(n,k) = ( ((1+sqrt(1+4*n))/2)^k - ((1-sqrt(1+4*n))/2)^k )/sqrt(1+4*n);
    for(n=0,12, for(k=0,n, print1( round(T(k,n-k)), ", "))) \\ G. C. Greubel, Jan 15 2020
    
  • Sage
    [[ round( (((1+sqrt(1+4*k))/2)^(n-k) - ((1-sqrt(1+4*k))/2)^(n-k) )/sqrt(1+4*k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 15 2020
    

Formula

T(n, k) = ( ((1+sqrt(1+4*n))/2)^k - ((1-sqrt(1+4*n))/2)^k )/sqrt(1+4*n).

A099134 Expansion of x/(1-2x-19x^2).

Original entry on oeis.org

0, 1, 2, 23, 84, 605, 2806, 17107, 87528, 500089, 2663210, 14828111, 80257212, 442248533, 2409384094, 13221490315, 72221278416, 395650872817, 2163506035538, 11844378654599, 64795371984420, 354633938406221
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

Binomial transform is A099133. Binomial transform of x/(1-20x^2), or (0,1,0,20,0,400,0,8000,....). The inverse binomial transform of k^(n-1)Fib(n) has g.f. x/(1-(k-2)x-(k^2+k-1)x^2).
4*a(n) = (-1)^(n+1)*b(n;4) = 3^n*b(n;4/3), where b(n;d), n=0,1,..., d \in C, denote one of the delta-Fibonacci numbers defined in comments to A014445 (see also Witula-Slota's paper). Our first identity is equivalent to the second formula given below. We note that the sequence (4/3)^n*F(n) is the binomial transform of the sequence 3^(-n)*b(n;4). - Roman Witula, Jul 24 2012

References

  • R. Witula, D. Slota, \delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.

Crossrefs

Cf. A015447.

Programs

  • Mathematica
    Join[{a=0,b=1},Table[c=2*b+19*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[x/(1-2x-19x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {2,19},{0,1},30] (* Harvey P. Dale, Dec 25 2019 *)

Formula

a(n) = 2a(n-1) + 19a(n-2).
a(n) = sum{k=0..n, (-1)^(n-k)binomial(n, k)4^(k-1)*Fib(k)}.
a(n) = sum{k=0..n, binomial(n, 2k+1)20^k}.

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A128100 Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045). Column 0 yields the Fibonacci numbers (A000045); the other columns yield convolved Fibonacci numbers (A001629, A001628, A001872, A001873, etc.). Sum_{k=0..floor(n/2)} k*T(n,k) = A073371(n-2).
Triangle T(n,k), with zeros omitted, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 24 2012
Riordan array (1/(1-x-x^2), x^2/(1-x-x^2)), with zeros omitted. - Philippe Deléham, Feb 06 2012
Diagonal sums are A000073(n+2) (tribonacci numbers). - Philippe Deléham, Feb 16 2014
Number of induced subgraphs of the Fibonacci cube Gamma(n-1) that are isomorphic to the hypercube Q_k. Example: row n=4 is 5, 5, 1; indeed, the Fibonacci cube Gamma(3) is a square with an additional pendant edge attached to one of its vertices; it has 5 vertices (i.e., Q_0's), 5 edges (i.e., Q_1's) and 1 square (i.e., Q_2). - Emeric Deutsch, Aug 12 2014
Row n gives the coefficients of the polynomial p(n,x) defined as the numerator of the rational function given by f(n,x) = 1 + (x + 1)/f(n-1,x), where f(x,0) = 1. Conjecture: for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2). - Clark Kimberling, Oct 22 2014

Examples

			Triangle starts:
   1;
   1;
   2,  1;
   3,  2;
   5,  5,  1;
   8, 10,  3;
  13, 20,  9,  1;
  21, 38, 22,  4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
   1;
   1,  0;
   2,  1,  0;
   3,  2,  0,  0;
   5,  5,  1,  0,  0;
   8, 10,  3,  0,  0,  0;
  13, 20,  9,  1,  0,  0,  0;
  21, 38, 22,  4,  0,  0,  0,  0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
  1
  2 +  x
  3 + 2x
  5 + 5x + x^2. (End)
		

Crossrefs

Programs

  • Maple
    G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
    Numerator[Table[Factor[p[x, n]], {n, 1, 20}]]  (* Clark Kimberling, Oct 22 2014 *)

Formula

G.f.: 1/(1-z-(1+t)z^2).
Sum_{k=0..n} T(n,k)*x^k = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, and -13, respectively. - Philippe Deléham, Jan 24 2012
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1). - Philippe Deléham, Jan 24 2012
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x/((2*k+2+ x*(1+y))*x + 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = Sum_{i=k..floor(n/2)} binomial(n-i,i)*binomial(i,k). See Corollary 3.3 in the Klavzar et al. link. - Emeric Deutsch, Aug 12 2014
Previous Showing 11-20 of 21 results. Next