A343343
Numbers with either no prime index dividing, or no prime index divisible by all the other prime indices.
Original entry on oeis.org
1, 15, 30, 33, 35, 45, 51, 55, 60, 66, 69, 70, 75, 77, 85, 90, 91, 93, 95, 99, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 150, 153, 154, 155, 161, 165, 170, 175, 177, 180, 182, 186, 187, 190, 195, 198, 201, 203, 204, 205, 207, 209, 210
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 90: {1,2,2,3} 141: {2,15}
15: {2,3} 91: {4,6} 143: {5,6}
30: {1,2,3} 93: {2,11} 145: {3,10}
33: {2,5} 95: {3,8} 150: {1,2,3,3}
35: {3,4} 99: {2,2,5} 153: {2,2,7}
45: {2,2,3} 102: {1,2,7} 154: {1,4,5}
51: {2,7} 105: {2,3,4} 155: {3,11}
55: {3,5} 110: {1,3,5} 161: {4,9}
60: {1,1,2,3} 119: {4,7} 165: {2,3,5}
66: {1,2,5} 120: {1,1,1,2,3} 170: {1,3,7}
69: {2,9} 123: {2,13} 175: {3,3,4}
70: {1,3,4} 132: {1,1,2,5} 177: {2,17}
75: {2,3,3} 135: {2,2,2,3} 180: {1,1,2,2,3}
77: {4,5} 138: {1,2,9} 182: {1,4,6}
85: {3,7} 140: {1,1,3,4} 186: {1,2,11}
For example, the prime indices of 90 are {1,2,2,3}, and, because 1 divides all the other parts, 90 is in the sequence, even though 3 is not divisible by all the other parts.
The partitions without these Heinz numbers are counted by
A130714.
The first condition alone gives
A342193.
The second condition alone gives
A343337.
The "and" instead of "or" version is
A343338.
The partitions with these Heinz numbers are counted by
A343346.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A257993,
A338470,
A339562,
A341450,
A343339,
A343340,
A343341,
A343342,
A343378,
A343379,
A343382.
A067619
Total number of parts in all self-conjugate partitions of n. Also, sum of largest parts of all self-conjugate partitions of n.
Original entry on oeis.org
0, 1, 0, 2, 2, 3, 3, 4, 7, 8, 9, 10, 15, 16, 18, 23, 30, 32, 35, 42, 51, 59, 63, 73, 89, 100, 106, 125, 145, 160, 174, 198, 229, 255, 274, 310, 355, 388, 420, 472, 534, 582, 631, 701, 784, 859, 928, 1021, 1144, 1243, 1338, 1475, 1630, 1767, 1909, 2089, 2299
Offset: 0
-
CoefficientList[Series[Sum[n*q^(2n-1)*Product[1+q^k, {k, 1, 2n-3, 2}], {n, 1, 30}], {q, 0, 60}], q]
A305082
G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k).
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 20, 28, 39, 54, 71, 94, 124, 159, 201, 258, 322, 401, 499, 613, 750, 918, 1110, 1340, 1617, 1935, 2308, 2752, 3261, 3854, 4554, 5350, 6273, 7348, 8572, 9983, 11612, 13460, 15578, 18007, 20761, 23894, 27473, 31511, 36090, 41296, 47152, 53767
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[((Log[1-x] + QPolyGamma[0, 1, x]) * QPochhammer[-1, x]) / (2*Log[x]), {x, 0, nmax}], x]
A325505
Heinz number of the set of Heinz numbers of all strict integer partitions of n.
Original entry on oeis.org
2, 3, 5, 143, 493, 62651, 26718511, 22017033127, 44220524211551, 52289759420183033963, 546407750301194131199484983, 8362548333129019658779663581495109, 1828111016191440393570169991636207115709029581, 1059934964500839879758659437301868941873808925011368355891
Offset: 0
The strict integer partitions of 5 are {(5), (4,1), (3,2)}, with Heinz numbers {11,14,15}, with Heinz number prime(11)*prime(14)*prime(15) = 62651, so a(6) = 62651.
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
143: {5,6}
493: {7,10}
62651: {11,14,15}
26718511: {13,21,22,30}
22017033127: {17,26,33,35,42}
44220524211551: {19,34,39,55,66,70}
52289759420183033963: {23,38,51,65,77,78,105,110}
546407750301194131199484983: {29,46,57,85,91,102,130,154,165,210}
Cf.
A001222,
A003963,
A015723,
A056239,
A066189,
A112798,
A145519,
A147655,
A215366,
A246867,
A325500 (non-strict version),
A325504,
A325506,
A325512,
A325513.
A327622
Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 3, 1, 0, 1, 1, 7, 8, 5, 1, 0, 1, 1, 9, 16, 15, 8, 1, 0, 1, 1, 11, 27, 35, 28, 10, 1, 0, 1, 1, 13, 41, 69, 73, 49, 13, 1, 0, 1, 1, 15, 58, 121, 160, 170, 86, 18, 1, 0, 1, 1, 17, 78, 195, 311, 460, 357, 156, 25, 1
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 3, 8, 16, 27, 41, 58, 78, 101, ...
1, 5, 15, 35, 69, 121, 195, 295, 425, ...
1, 8, 28, 73, 160, 311, 553, 918, 1443, ...
1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ...
1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2020, after Maple *)
A015716
Triangle read by rows: T(n,k) is the number of partitions of n into distinct parts, one of which is k (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 3, 3, 3, 2, 2, 2, 1, 1, 1, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 8, 7, 6, 6, 4, 4, 4, 3, 2, 2, 1, 1
Offset: 1
T(8,3)=2 because we have [5,3] and [4,3,1].
Triangle begins:
n/k 1 2 3 4 5 6 7 8 9 10
01: 1
02: 0 1
03: 1 1 1
04: 1 0 1 1
05: 1 1 1 1 1
06: 2 2 1 1 1 1
07: 2 2 1 2 1 1 1
08: 3 2 2 1 2 1 1 1
09: 3 3 3 2 2 2 1 1 1
10: 5 4 4 3 2 2 2 1 1 1
...
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), which is row n = 6. - _Gus Wiseman_, May 07 2019
-
g:=product(1+x^j,j=1..50)*sum(t^i*x^i/(1+x^i),i=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Mar 29 2006
seq(seq(coeff(x^k*(product(1+x^j, j=1..n))/(1+x^k), x, n), k=1..n), n=1..13); # Mircea Merca, Feb 28 2014
-
z = 15; d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]; p[n_, k_] := p[n, k] = d[n][[k]]; s[n_] := s[n] = Flatten[Table[p[n, k], {k, 1, PartitionsQ[n]}]]; t[n_, k_] := Count[s[n], k]; u = Table[t[n, k], {n, 1, z}, {k, 1, n}]; TableForm[u] (* A015716 as a triangle *)
v = Flatten[u] (* A015716 as a sequence *)
(* Clark Kimberling, Mar 14 2014 *)
A079499
Total number of parts in all partitions of n into distinct odd parts.
Original entry on oeis.org
0, 1, 0, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 7, 6, 10, 12, 13, 12, 16, 18, 22, 22, 25, 32, 36, 36, 42, 50, 53, 58, 64, 76, 83, 88, 99, 116, 123, 132, 147, 168, 181, 194, 215, 240, 262, 280, 306, 346, 375, 396, 437, 482, 521, 558, 610, 670, 724, 772, 840, 922, 993, 1056, 1151, 1256, 1348
Offset: 0
a(13)=7 because the partitions of 13 into distinct odd parts are [13], [9,3,1] and [7,5,1] and we have 1+3+3=7 parts.
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
-
g:=sum(k*x^(k^2)/product(1-x^(2*i),i =1..k),k=1..20):gser:=series(g,x=0,52): seq(coeff(gser,x,n),n=0..50); # Emeric Deutsch, Feb 14 2006
-
max = 100; s = Sum[ k*x^(k^2) / Product[1-x^(2*j), {j, 1, k}], {k, 1, Sqrt[max] // Ceiling}]; CoefficientList[ Series[s, {x, 0, max}], x] (* Jean-François Alcover, Feb 19 2015, after Vladeta Jovovic *)
-
N=66; S=2+sqrtint(N); x='x+O('x^N);
gf=sum(n=0, S, n*x^(n^2)/prod(k=1,n, 1-x^(2*k)) );
concat( [0], Vec(gf) )
\\ Joerg Arndt, Feb 18 2014
A129838
Number of up/down (or down/up) compositions of n into distinct parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 78, 97, 128, 170, 222, 285, 421, 510, 683, 872, 1148, 1440, 1893, 2576, 3209, 4151, 5313, 6784, 8615, 10969, 13755, 18573, 22713, 29173, 36536, 46705, 57899, 73696, 91076, 114777, 148531, 182813, 228938, 287042
Offset: 0
From _Gus Wiseman_, Jan 15 2022: (Start)
The a(1) = 1 through a(8) = 8 up/down strict compositions (non-strict A025048):
(1) (2) (3) (4) (5) (6) (7) (8)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,3) (2,4) (2,5) (2,6)
(1,3,2) (3,4) (3,5)
(2,3,1) (1,4,2) (1,4,3)
(2,4,1) (1,5,2)
(2,5,1)
(3,4,1)
The a(1) = 1 through a(8) = 8 down/up strict compositions (non-strict A025049):
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(4,1) (5,1) (5,2) (6,2)
(2,1,3) (6,1) (7,1)
(3,1,2) (2,1,4) (2,1,5)
(4,1,2) (3,1,4)
(4,1,3)
(5,1,2)
(End)
The case of permutations is
A000111.
This is the up/down case of
A032020.
Cf.
A003056,
A008289,
A008965,
A015723,
A072706,
A128761,
A218074,
A345165,
A345170,
A345195,
A349800.
-
g:= proc(u, o) option remember;
`if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
end:
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), b(n-k, k)+b(n-k, k-1)))
end:
a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..60); # Alois P. Heinz, Dec 22 2021
-
whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]y[[m+1]]],{m,1,Length[y]-1}];
Table[Length[Select[Join@@Permutations/@ Select[IntegerPartitions[n],UnsameQ@@#&],whkQ]],{n,0,15}] (* Gus Wiseman, Jan 15 2022 *)
Name changed from "alternating" to "up/down" by
Gus Wiseman, Jan 15 2022
A238132
Number of parts in all partitions of n into even number of distinct parts.
Original entry on oeis.org
0, 0, 0, 2, 2, 4, 4, 6, 6, 8, 12, 14, 18, 24, 32, 38, 50, 60, 76, 90, 110, 134, 162, 190, 228, 270, 322, 380, 446, 524, 616, 720, 838, 980, 1134, 1314, 1526, 1760, 2026, 2336, 2676, 3072, 3518, 4020, 4586, 5232, 5948, 6760, 7676, 8698, 9846, 11142, 12578
Offset: 0
a(8)=6 because the partitions of 8 into even number of distinct parts are: 7+1, 6+2 and 5+3.
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function s_e(n).
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, (p->
[p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
end:
a:= n-> b(n$2)[3]:
seq(a(n), n=0..60); # Alois P. Heinz, Dec 27 2015
-
max = 50; s = (1/2)*Product[1+x^k, {k, 1, max}]*Sum[x^k/(1+x^k), {k, 1, max}] - (1/2)*Product[1-x^k, {k, 1, max}]*Sum[x^k/(1-x^k), {k, 1, max}] + O[x]^(max+1); CoefficientList[s, x] (* Jean-François Alcover, Dec 27 2015 *)
A015724
Number of parts in all partitions of all the numbers in {1,2,...,n} into distinct parts.
Original entry on oeis.org
1, 2, 5, 8, 13, 21, 31, 44, 62, 87, 117, 157, 206, 269, 349, 447, 566, 715, 894, 1112, 1378, 1696, 2076, 2531, 3072, 3712, 4472, 5367, 6417, 7651, 9093, 10772, 12732, 15004, 17639, 20691, 24211, 28265, 32934, 38293, 44435, 51470, 59507, 68677
Offset: 1
Comments