cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A335025 Largest side lengths of almost-equilateral Heronian triangles.

Original entry on oeis.org

5, 15, 53, 195, 725, 2703, 10085, 37635, 140453, 524175, 1956245, 7300803, 27246965, 101687055, 379501253, 1416317955, 5285770565, 19726764303, 73621286645, 274758382275, 1025412242453, 3826890587535, 14282150107685, 53301709843203, 198924689265125, 742397047217295, 2770663499604053
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2020

Keywords

Examples

			a(1) = 5; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5] and 5 is the largest side length.
a(2) = 15; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15] and 15 is the largest side length.
		

Crossrefs

Cf. a(n) = A003500(n) + 1.
Cf. A011945 (areas), A334277 (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), this sequence (largest side lengths).

Programs

  • Mathematica
    Table[Expand[(2 + Sqrt[3])^n + (2 - Sqrt[3])^n + 1], {n, 40}]

Formula

a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n + 1.
From Alejandro J. Becerra Jr., Feb 12 2021: (Start)
G.f.: x*(3*x^2 - 10*x + 5)/((1 - x)*(x^2 - 4*x + 1)).
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). (End)

A100233 a(n) = Lucas(3*n) - 1.

Original entry on oeis.org

1, 3, 17, 75, 321, 1363, 5777, 24475, 103681, 439203, 1860497, 7881195, 33385281, 141422323, 599074577, 2537720635, 10749957121, 45537549123, 192900153617, 817138163595, 3461452808001, 14662949395603, 62113250390417, 263115950957275, 1114577054219521
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

Main diagonal of triangle A100232.

Crossrefs

Programs

  • Magma
    I:=[1, 3, 17]; [n le 3 select I[n] else 5*Self(n-1) -3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[3*n] - 1, {n,0,50}] (* or *) LinearRecurrence[{5,-3,-1}, {1,3,17}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-4*x-x^2)+x*O(x^n)),n))
    
  • PARI
    Vec((1-2*x+5*x^2)/((1-x)*(1-4*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 02 2016
    

Formula

a(n) = A014448(n) - 1.
a(n) = 4*a(n-1) + a(n-2) + 4 for n>1, with a(0)=1, a(1)=3.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-4*x-x^2)).
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 5*x^2) )^n. Cf. A016064. - Peter Bala, Jun 23 2015
From Colin Barker, Jun 02 2016: (Start)
a(n) = -1+(2-sqrt(5))^n+(2+sqrt(5))^n.
a(n) = 5*a(n-1)-3*a(n-2)-a(n-3) for n>2.
G.f.: (1-2*x+5*x^2) / ((1-x)*(1-4*x-x^2)).
(End)

Extensions

New definition from Ralf Stephan, Dec 01 2004

A151961 Semiperimeter of the n-th Heronian triangle.

Original entry on oeis.org

3, 6, 21, 78, 291, 1086, 4053, 15126, 56451, 210678, 786261, 2934366, 10951203, 40870446, 152530581, 569251878, 2124476931, 7928655846, 29590146453, 110431929966, 412137573411, 1538118363678, 5740335881301, 21423225161526, 79952564764803, 298387033897686
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 13 2009

Keywords

Comments

The side lengths are consecutive integers (A016064) and the area is an integer (A011945).
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 27 = 0. - Colin Barker, Feb 08 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 432 = 0. - Colin Barker, Feb 16 2014

Crossrefs

Programs

  • Magma
    I:=[3,6]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 11 2014
    
  • Mathematica
    CoefficientList[Series[3(1-2x)/(1-4x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Feb 11 2014 *)
    3*ChebyshevT[Range[0, 40], 2] (* G. C. Greubel, Oct 10 2022 *)
    LinearRecurrence[{4,-1},{3,6},30] (* Harvey P. Dale, Dec 21 2022 *)
  • PARI
    Vec(3*x*(1-2*x)/(1-4*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
    
  • SageMath
    [3*chebyshev_T(n, 2) for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = 3 * A001075(n-1). - Joerg Arndt, Oct 10 2022
a(n) = 3*(A016064(n-1) + 1)/2 = 3*A003500(n-1)/2. - R. J. Mathar, Jul 27 2009
From Colin Barker, Mar 30 2012: (Start)
a(n) = 4*a(n-1) - a(n-2).
G.f.: 3*x*(1-2*x)/(1-4*x+x^2). (End)
a(n) = 3*( (2+sqrt(3))*(2-sqrt(3))^n + (2-sqrt(3))*(2+sqrt(3))^n )/2. - Colin Barker, Oct 12 2015

Extensions

More terms from R. J. Mathar, Jul 27 2009

A087601 Primes occurring as lesser side of Heronian triangle (sides are consecutive integers, area and inradius are integers).

Original entry on oeis.org

3, 13, 193, 37633, 7300801, 1416317953
Offset: 1

Views

Author

Zak Seidov, Aug 07 2003

Keywords

Comments

Next term (if it exists) is greater than 10^10000. - Ray Chandler, Jul 04 2015

Examples

			a(1)=3 because 3, 4 and 5 are sides of Heronian triangle (area is 6, inradius is 1).
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Formula

Prime elements of A016064. Alternatively, primes p such that 3*(p+1)^2-12 is a square, i.e., p+1 belongs to A003500. - Max Alekseyev, May 14 2010

A087602 Primes occurring as larger side of Heronian triangle (sides are consecutive integers, area and inradius are integers).

Original entry on oeis.org

3, 5, 53, 140453
Offset: 1

Views

Author

Zak Seidov, Aug 07 2003

Keywords

Comments

Next term (if it exists) is greater than 10^10000. - Ray Chandler, Jul 04 2015

Examples

			a(3)=53 because 53, 52 and 51 are sides of Heronian triangle (area is 1170, inradius is 15).
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Formula

p, p-1 and p-2 are sides of Heronian triangle.
Primes p such that 3*(p-1)^2-12 is a square, i.e., p-1 belongs to A003500. - Max Alekseyev, May 14 2010

A131515 a(n+2) = 34*a(n+1) - a(n) + 2; a(1) = 1 and a(2) = 16.

Original entry on oeis.org

1, 16, 545, 18516, 629001, 21367520, 725866681, 24658099636, 837649520945, 28455425612496, 966646821303921, 32837536498720820, 1115509594135203961, 37894488664098213856, 1287297104985204067145, 43730207080832840069076, 1485539743643331358281441
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 14 2007

Keywords

Examples

			If n=3 then a(3) = 34*a(2) - a(1) + 2 = 545 which is the third term in the sequence.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==16,a[n]==34a[n-1]-a[n-2]+2},a,{n,20}] (* or *) LinearRecurrence[{35,-35,1},{1,16,545},20] (* Harvey P. Dale, Feb 10 2015 *)
  • PARI
    Vec(x*(1-19*x+20*x^2)/((1-x)*(1-34*x+x^2)) + O(x^20)) \\ Colin Barker, Mar 02 2016
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,-35,35]^n*[20;1;16])[1,1] \\ Charles R Greathouse IV, Aug 05 2016

Formula

G.f.: -x*(1-19*x+20*x^2)/(-1+x)/(1-34*x+x^2). - R. J. Mathar, Nov 14 2007
a(1)=1, a(2)=16, a(3)=545, a(n) = 35*a(n-1)-35*a(n-2)+a(n-3). - Harvey P. Dale, Feb 10 2015
a(n) = (-6 + (963-680*sqrt(2))*(17+12*sqrt(2))^n + (17+12*sqrt(2))^(-n)*(963+680*sqrt(2)))/96. - Colin Barker, Mar 02 2016

Extensions

Definition corrected by Rick L. Shepherd, Aug 17 2007
More terms from Harvey P. Dale, Feb 10 2015

A242497 Sides of (Heronian) triangles where sides are consecutive integers and area is an integer.

Original entry on oeis.org

3, 4, 5, 13, 14, 15, 51, 52, 53, 193, 194, 195, 723, 724, 725, 2701, 2702, 2703, 10083, 10084, 10085, 37633, 37634, 37635, 140451, 140452, 140453, 524173, 524174, 524175, 1956243, 1956244, 1956245, 7300801, 7300802, 7300803, 27246963, 27246964, 27246965
Offset: 1

Views

Author

Keywords

Comments

Let the edge lengths of the triangle be 2x-1, 2x, 2x+1 so that area = sqrt{3x * x * (x-1) * (x+1)} and we need x^2 - 1 to be of shape 3y^2. That is, x/y is an even rank convergent to the continued fraction of sqrt(3) and x is A001075.
The intermediate length sides are given by A003500(n), n >= 1. Note that A003500(0) = 2 corresponds to the degenerate (Heronian) triangle with sides {1, 2, 3} and area 0. - Daniel Forgues, May 28 2014

References

  • Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.

Crossrefs

A016064 is the main entry for this sequence.

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,4,4,4,-1,-1,-1},{3,4,5,13,14,15,51,52},40] (* Harvey P. Dale, May 04 2021 *)
  • PARI
    Vec((-3*x^7 - 5*x^6 - 6*x^5 + 4*x^4 + 10*x^3 + 12*x^2 + 7*x + 3)/(x^8 + x^7+ x^6 - 4*x^5 - 4*x^4 - 4*x^3 + x^2 + x + 1)+O(x^99))

Formula

G.f.: (-3*x^7 - 5*x^6 - 6*x^5 + 4*x^4 + 10*x^3 + 12*x^2 + 7*x + 3)/ ((1+x+x^2)*(1-4*x^3+x^6)). - R. J. Mathar, May 30 2023

A240240 Consider primitive Heronian triangles with integer area and with sides {m, m+1, c}, where c > m+1. The sequence gives the possible values of m.

Original entry on oeis.org

3, 9, 13, 19, 20, 33, 51, 65, 73, 99, 119, 129, 163, 170, 174, 193, 201, 203, 220, 243, 260, 269, 287, 289, 339, 362, 377, 393, 450, 451, 513, 532, 559, 579, 615, 649, 696, 702, 714, 723, 740, 771, 801, 883, 909, 940, 969, 975, 1059, 1112, 1153, 1155, 1156, 1164, 1251, 1299, 1325, 1332, 1353, 1424, 1455, 1459, 1569, 1605, 1615, 1683, 1690, 1716, 1801, 1869, 1919, 1923
Offset: 1

Views

Author

Zak Seidov, Apr 03 2014

Keywords

Comments

Corresponding values of c are 5, 17, 15, 37, 29, 65, 101, 109, 145.
And corresponding values of area/6 are 1, 6, 14, 19, 35, 44, 85, 330, 146, 231, 1190.
The sequence includes all terms of A016064 (where c = m+2) except for the first term, 1 (case with zero area).
Note that in all cases c is odd and m+2 <= c < 2m+1.

Examples

			First triangle has sides (3,4,5) and area 6.
2nd triangle has sides (9,10,17) and area 36.
3rd triangle has sides (13,14,15) and area 84.
		

Crossrefs

Programs

  • Mathematica
    re=Reap[Do[a=m;b=m+1;Do[s=(a+b+c)/2;area=Sqrt[s(s-a)(s-b)(s-c)];If[IntegerQ[area],Sow[{a,b,c,area}];Break[]],{c,2m-1,m+2,-2 }],{m,3,2000}]][[2,1]];#[[1]]&/@ re
Previous Showing 11-18 of 18 results.