cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A248216 a(n) = 6^n - 2^n.

Original entry on oeis.org

0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Sequences of the form k^n - 2^n: A001047 (k=3), A020522 (k=4), A005057 (k=5), this sequence (k=6), A190540 (k=7), A248217 (k=8), A191465 (k=9), A060458 (k=10), A139740 (k=11).

Programs

  • Magma
    [6^n-2^n: n in [0..25]];
    
  • Mathematica
    Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
    LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
  • Sage
    [2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021

Formula

G.f.: 4*x/((1-2*x)*(1-6*x)).
a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 2^n*(3^n - 1) = A000079(n) * A024023(n).
E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021
a(n) = 4*A016129(n-1). - R. J. Mathar, Mar 10 2022
a(n) = A000400(n) - A000079(n). - Bernard Schott, Mar 27 2022

A016173 Expansion of 1/((1-6*x)*(1-10*x)).

Original entry on oeis.org

1, 16, 196, 2176, 23056, 238336, 2430016, 24580096, 247480576, 2484883456, 24909300736, 249455804416, 2496734826496, 24980408958976, 249882453753856, 2499294722523136, 24995768335138816, 249974610010832896, 2499847660064997376, 24999085960389984256, 249994515762339905536, 2499967094574039433216
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A016129.

Programs

Formula

a(n) = (10^(n+1) - 6^(n+1))/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = 16*a(n-1) - 60*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = 10*a(n-1) + 6^n, a(0)=1. - Vincenzo Librandi, Feb 09 2011
E.g.f.: (1/2)*(5*exp(10*x) - 3*exp(6*x)). - G. C. Greubel, Nov 13 2024

Extensions

More terms added by G. C. Greubel, Nov 13 2024

A089274 Fifth column of the Legendre-Stirling triangle A071951.

Original entry on oeis.org

1, 70, 3192, 121424, 4203824, 137922336, 4380918784, 136378114048, 4191383868672, 127754693361152, 3873052857829376, 117001609550671872, 3526270158211870720, 106112798944292282368, 3189880933574260359168
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

This is the fifth member of the family A000079 (powers of 2), A016129, A016309, A071952, etc.

Crossrefs

Cf. A000079 (powers of 2).

Programs

  • Magma
    [(16875*(6*5)^n - 20000*(5*4)^n + 6048*(4*3)^n - 405*(3*2)^n + 2*(2*1)^n)/2520: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
    
  • Mathematica
    Table[2^(n-3)*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)/315, {n,0,30}] (* G. C. Greubel, Nov 10 2024 *)
  • SageMath
    def A089274(n): return 2^n*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)//2520
    [A089274(n) for n in range(31)] # G. C. Greubel, Nov 10 2024

Formula

G.f.: 1/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)*(1-5*4*x)*(1-6*5*x)).
a(n) = (16875*(6*5)^n -20000*(5*4)^n +6048*(4*3)^n -405*(3*2)^n +2*(2*1)^n)/2520.
a(n) = A071951(n+5, 5), n>=0.
a(n) = det(|ps(i+5,j+4)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). [Mircea Merca, Apr 06 2013]
E.g.f.: (1/2520)*(2*exp(2*x) - 405*exp(6*x) + 6048*exp(12*x) - 20000*exp(20*x) + 16875*exp(30*x)). - G. C. Greubel, Nov 10 2024

A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Examples

			From _Stefano Spezia_, Apr 28 2024: (Start)
Triangle begins:
   1;
   2,  6;
   4, 12,  36;
   8, 24,  72, 216;
  16, 48, 144, 432, 1296;
  32, 96, 288, 864, 2592, 7776;
  ...
(End)
		

Crossrefs

Programs

Formula

T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025

A016200 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 9, 61, 381, 2317, 13965, 83917, 503757, 3023053, 18139341, 108838093, 653032653, 3918204109, 23509241037, 141055478989, 846332939469, 5077997767885, 30467986869453, 182807921741005, 1096847531494605, 6581085191064781, 39486511150582989, 236919066911886541, 1421514401488096461
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..100],n->(9*6^n-5*2^n+1)/5); # Muniru A Asiru, Feb 06 2018
  • Maple
    seq((9*6^n-5*2^n+1)/5, n=0..100); # Muniru A Asiru, Feb 06 2018
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-2x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{9,-20,12},{1,9,61},30] (* Harvey P. Dale, Aug 23 2025 *)

Formula

a(n) = (9*6^n - 5*2^n + 1)/5. - Bruno Berselli, Feb 09 2011
a(0)=1, a(n) = 6*a(n-1) + 2^(n+1) - 1. - Vincenzo Librandi, Feb 09 2011
a(n) = Sum_{k=0..n} 2^(n-1-k)*(3^(n+1-k) - 1). - J. M. Bergot, Feb 06 2018
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(x)*(9*exp(5*x) - 5*exp(x) + 1)/5.
a(n) = A016129(n+1) - A003464(n+2) = A241275(n+2)/5.
a(n) = 9*a(n-1) - 20*a(n-2) + 12*a(n-3). (End)

A016304 Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)).

Original entry on oeis.org

1, 15, 157, 1419, 11869, 94731, 733069, 5551323, 41378557, 304766187, 2224062061, 16112628987, 116053574365, 831966057483, 5941308640333, 42294437942811, 300292730428093, 2127439102098219, 15044413649559085
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 15 else n eq 3 select 157 else 15*Self(n-1)-68*Self(n-2) +84*Self(n-3): n in [1..20] ]; // Vincenzo Librandi, Aug 25 2011
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-7x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -68, 84}, {1, 15, 157}, 30]
  • PARI
    Vec(1/((1-2*x)*(1-6*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(7^n - 2^n)/5-(6^n - 2^n)/4 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (7^(n+2) - 2^(n+2))/5-(6^(n+2) - 2^(n+2))/4. - Zerinvary Lajos, Jun 05 2009 [corrected by Joerg Arndt, Aug 25 2011]
From Vincenzo Librandi, Aug 25 2011: (Start)
a(n) = 15*a(n-1) - 68*a(n-2) + 84*a(n-3) for n > 2;
a(n) = 13*a(n-1) - 42*a(n-2) + 2^n for n > 1. (End)
E.g.f.: exp(2*x)*(1 - 45*exp(4*x) + 49*exp(5*x))/5. - Stefano Spezia, Aug 25 2025

A089511 Triangle of integers used to compute column sequences of array A078739 ((2,2)-Stirling2).

Original entry on oeis.org

1, -1, 3, 1, -6, 6, -1, 27, -108, 100, 1, -36, 216, -400, 225, -1, 135, -2160, 10000, -16875, 9261, 1, -162, 3240, -20000, 50625, -55566, 21952, -1, 567, -27216, 350000, -1771875, 4084101, -4302592, 1679616, 1, -648, 36288, -560000, 3543750, -10890936, 17210368, -13436928
Offset: 2

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The k-th column sequence (without leading zeros) of A078739 is for even k: sum(a(k,m)*((m+1)*m)^n,m=1..k-1)/D(k) and for odd k it is: ((k^2-1)/2)*sum(a(k,m)*((m+1)*m)^n,m=1..k-1)/D(k), where D(k) := A089512(k) and n>=0, k>=2.

Examples

			[1]; [ -1,3]; [1,-6,6]; [ -1,27,-108,100]; ...
a(2,1)=A089512(2)*A089275(1,0)*A089278(1,1)/A089500(1)=1*1*1/1=1;
a(3,2)=A089512(3)*A089276(1,0)*A089278(2,2)/A089500(2)=2*1*3/2=3.
a(4,3)=1*(1+18/(4*3))*24/10 =6; a(5,4)= 18*(1+8/(5*4))*2500/630=100.
k=2 column sequence of A078739 is (1*(2*1)^n)/1 = 2^n. k=3: 4*(-1*(2*1)^n + 3*(3*2)^n)/2 (see A016129).
		

Formula

a(n, m) triangle 2<=n, 1<= m <= (n-1), else 0, with a(2*k, m)= D(2*k)*sum(A089275(k, p)/((m+1)*m)^p, p=0..k-1)*A089278(2*k-1, m)/A089500(2*k-1) and a(2*k+1, m)= D(2*k+1)*sum(A089276(k, p)/((m+1)*m)^p, p=0..k-1)*A089278(2*k, m)/A089500(2*k), where D(n) := A089512(n).

A144843 a(n) = (6^n - 2^n)^2 / 16.

Original entry on oeis.org

1, 64, 2704, 102400, 3748096, 135675904, 4893282304, 176265625600, 6346852335616, 228502162898944, 8226263614357504, 296147719133593600, 10661344637077159936, 383808727914259677184, 13817118056668205154304, 497416296261117961830400, 17906987220053014721069056
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Sep 22 2008

Keywords

Crossrefs

Cf. A016129.

Programs

  • Magma
    [4^(n-2)*(3^n-1)^2: n in [1..30]]; // G. C. Greubel, Oct 03 2024
    
  • Mathematica
    Table[(6^n-2^n)^2/16, {n,20}] (* Harvey P. Dale, Apr 15 2020 *)
  • SageMath
    [4^(n-2)*(3^n-1)^2 for n in range(1,31)] # G. C. Greubel, Oct 03 2024

Formula

From R. J. Mathar, Sep 24 2008: (Start)
a(n) = 81*36^(n-2) + 4^(n-2) - 18*12^(n-2).
G.f.: x*(1+12*x)/((1-4*x)*(1-12*x)*(1-36*x)). (End)
a(n) = A016129(n-1)^2. - Philippe Deléham, Nov 26 2008
a(n) = 4^(n-2) * (3^n - 1)^2. - Harvey P. Dale, Apr 15 2020
E.g.f.: (1/16)*exp(4*x)*(1 - 2*exp(8*x) + exp(32*x)). - G. C. Greubel, Oct 03 2024

Extensions

More terms from R. J. Mathar, Sep 24 2008

A026542 Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-11*x)).

Original entry on oeis.org

1, 26, 443, 6292, 81081, 986622, 11585911, 132996344, 1504338341, 16852487938, 187601429379, 2079728352156, 22993065448081, 253755685986374, 2797253854490447, 30812086837337728, 339233247941143101, 3733693166454672330, 41085669244650954715
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(1/180)*(11^(n+3) -9*7^(n+3) +9*6^(n+3) -2^(n+3)): n in [0..30]]; // G. C. Greubel, Apr 09 2022
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-7x)(1-11x)),{x,0,30}],x] (* Harvey P. Dale, May 27 2019 *)
  • SageMath
    [(1/180)*(11^(n+3) -9*7^(n+3) +9*6^(n+3) -2^(n+3)) for n in (0..30)] # G. C. Greubel, Apr 09 2022

Formula

a(n) = (1/180)*(11^(n+3) -9*7^(n+3) +9*6^(n+3) -2^(n+3)). - R. J. Mathar, Jun 23 2013
E.g.f.: (1/180)*(-8*exp(2*x) + 1944*exp(6*x) - 3087*exp(7*x) + 1331*exp(11*x)). - G. C. Greubel, Apr 09 2022

A026543 Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-12*x)).

Original entry on oeis.org

1, 27, 481, 7191, 98161, 1272663, 16005025, 197611623, 2412718033, 29257382583, 353312653057, 4255864465671, 51186427162417, 615069092006487, 7386770412718177, 88683539390560935, 1064502765417159313
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(-2^n +225*6^n -7^(n+3) +12^(n+2))/25: n in [0..30]]; // G. C. Greubel, Apr 09 2022
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-7x)(1-12x)),{x,0,30}],x] (* Harvey P. Dale, Apr 18 2019 *)
  • SageMath
    [(-2^n +225*6^n -7^(n+3) +12^(n+2))/25 for n in (0..30)] # G. C. Greubel, Apr 09 2022

Formula

a(n) = (-2^n + 225*6^n - 7^(n+3) + 12^(n+2))/25. - R. J. Mathar, Jun 23 2013
E.g.f.: 1/25 (-exp(2*x) + 225*exp(6*x) - 343*exp(7*x) + 144*exp(12*x)). - G. C. Greubel, Apr 09 2022
Previous Showing 11-20 of 30 results. Next