A257289
a(n) = 8*9^n - 7*8^n.
Original entry on oeis.org
1, 16, 200, 2248, 23816, 243016, 2416520, 23583688, 226933256, 2159839816, 20378082440, 190918934728, 1778399954696, 16486635929416, 152228014061960, 1400838452135368, 12853836673840136, 117654854901535816, 1074656292809619080, 9798007424852945608
Offset: 0
-
[8*9^n-7*8^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
-
Table[8 9^n - 7 8^n, {n, 0, 20}] (* Vincenzo Librandi, May 04 2015 *)
LinearRecurrence[{17,-72},{1,16},30] (* Harvey P. Dale, May 26 2019 *)
-
a(n)=8*9^n-7*8^n
-
[8*9^n-7*8^n for n in (0..20)] # Bruno Berselli, May 04 2015
A175840
Mirror image of Nicomachus' table: T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 3, 2, 9, 6, 4, 27, 18, 12, 8, 81, 54, 36, 24, 16, 243, 162, 108, 72, 48, 32, 729, 486, 324, 216, 144, 96, 64, 2187, 1458, 972, 648, 432, 288, 192, 128, 6561, 4374, 2916, 1944, 1296, 864, 576, 384, 256, 19683, 13122, 8748, 5832, 3888, 2592, 1728, 1152, 768, 512
Offset: 0
1;
3, 2;
9, 6, 4;
27, 18, 12, 8;
81, 54, 36, 24, 16;
243, 162, 108, 72, 48, 32;
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- J. O'Connor and E.F. Robertson, Nicomachus of Gerasa, The MacTutor History of Mathematics archive, 2010.
- Jay Kappraff, The Arithmetic of Nicomachus of Gerasa and its Applications to Systems of Proportion, Nexus Network Journal, vol. 2, no. 4 (October 2000).
- Hendrik Lenstra, Aeternitatem Cogita, Nieuw Archief voor Wiskunde, 5/2, maart 2001, pp. 23-28.
- Ivars Peterson, Medieval Harmony, Math Trek, Mathematical Association of America, 1998.
Triangle sums:
A001047 (Row1),
A015441 (Row2),
A016133 (Kn1 & Kn4),
A005061 (Kn2 & Kn3),
A016153 (Fi1& Fi2),
A180844 (Ca1 & Ca4),
A016140 (Ca2, Ca3),
A180846 (Gi1 & Gi4),
A180845 (Gi2 & Gi3),
A016185 (Ze1 & Ze4),
A180847 (Ze2 & Ze3).
-
a175840 n k = a175840_tabf !! n !! k
a175840_row n = a175840_tabf !! n
a175840_tabf = iterate (\xs@(x:_) -> x * 3 : map (* 2) xs) [1]
-- Reinhard Zumkeller, Jun 08 2013
-
A175840 := proc(n,k): 3^(n-k)*2^k end: seq(seq(A175840(n,k),k=0..n),n=0..9);
-
Flatten[Table[3^(n-k) 2^k,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 08 2013 *)
A191465
a(n) = 9^n - 2^n.
Original entry on oeis.org
0, 7, 77, 721, 6545, 59017, 531377, 4782841, 43046465, 387419977, 3486783377, 31381057561, 282429532385, 2541865820137, 22876792438577, 205891132061881, 1853020188786305, 16677181699535497, 150094635296736977, 1350851717672467801, 12157665459055880225, 109418989131510262057
Offset: 0
-
Table[9^n-2^n,{n,0,20}] (* Harvey P. Dale, Apr 16 2014 *)
-
a(n)=9^n-1<Charles R Greathouse IV, Jun 08 2011
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A191466
a(n) = 9^n - 5^n.
Original entry on oeis.org
0, 4, 56, 604, 5936, 55924, 515816, 4704844, 42656096, 385467364, 3477018776, 31332231484, 282185395856, 2540645125204, 22870688939336, 205860614516524, 1852867600961216, 16676418760213444, 150090820599733496, 1350832644186663964, 12157570091625288176, 109418512294354156084
Offset: 0
-
[9^n-5^n: n in [0..20]];
-
Table[9^n - 5^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x/((1 - 5 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
LinearRecurrence[{14,-45},{0,4},20] (* Harvey P. Dale, Jun 26 2019 *)
-
a(n)=9^n-5^n \\ Charles R Greathouse IV, Jun 08 2011
Original entry on oeis.org
0, 2, 32, 386, 4160, 42242, 413792, 3959426, 37281920, 347066882, 3204309152, 29403732866, 268588249280, 2444976817922, 22198569382112, 201143570584706, 1819787258282240, 16444551185679362, 148466221699088672, 1339452822487618946
Offset: 0
-
[9^n - 7^n: n in [0..20]]:
-
Table[9^n-7^n,{n,0,20}] (* or *) LinearRecurrence[{16,-63},{0,2},20] (* Harvey P. Dale, Jun 21 2014 *)
CoefficientList[Series[2 x/((1 - 7 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
-
a(n)=9^n-7^n \\ Charles R Greathouse IV, Jun 08 2011
A147671
Primes of the form 9^k-8^k.
Original entry on oeis.org
17, 2685817, 4555386192335572300559213161, 371616904162662789429456905017, 8591830681082909151487632391785043782074371844781522582861081817, 15210163976423790740121668878903464496715921225994590375394324312407011207180253342612172354203245908479382157462960757179523559095554271755561
Offset: 1
-
lst={};Do[p=9^n-8^n;If[PrimeQ[p],AppendTo[lst,p]],{n,6!}];lst
Select[Table[9^n-8^n,{n,150}],PrimeQ] (* Harvey P. Dale, May 13 2018 *)
A248343
a(n) = 10^n - 8^n.
Original entry on oeis.org
0, 2, 36, 488, 5904, 67232, 737856, 7902848, 83222784, 865782272, 8926258176, 91410065408, 931280523264, 9450244186112, 95601953488896, 964815627911168, 9718525023289344, 97748200186314752, 981985601490518016, 9855884811924144128
Offset: 0
-
[10^n-8^n: n in [0..30]];
-
Table[10^n - 8^n, {n, 0, 25}] (* or *) CoefficientList[Series[2 x/((1 - 8 x) (1 - 10 x)), {x, 0, 30}], x]
LinearRecurrence[{18,-80},{0,2},30] (* Harvey P. Dale, May 21 2018 *)
Comments