cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A344041 Decimal expansion of Sum_{k>=1} F(k)/(k*2^k), where F(k) is the k-th Fibonacci number (A000045).

Original entry on oeis.org

8, 6, 0, 8, 1, 7, 8, 8, 1, 9, 2, 8, 0, 0, 8, 0, 7, 7, 7, 7, 8, 8, 6, 6, 4, 6, 5, 9, 0, 1, 2, 1, 0, 8, 5, 0, 8, 4, 9, 1, 4, 1, 3, 6, 5, 0, 8, 0, 5, 7, 9, 3, 0, 9, 5, 1, 4, 0, 1, 2, 2, 0, 7, 9, 8, 5, 1, 2, 2, 4, 3, 0, 9, 2, 2, 2, 6, 3, 9, 2, 2, 7, 2, 2, 9, 8, 0
Offset: 0

Views

Author

Amiram Eldar, May 07 2021

Keywords

Comments

This constant is a transcendental number (Adhikari et al., 2001).
A similar series is Sum_{k>=1} F(k)/2^k = 2.
The corresponding series with Lucas numbers (A000032) is Sum_{k>=1} L(k)/(k*2^k) = 2*log(2) (A016627).
In general, for m>=2, Sum_{k>=1} F(k)/(k*m^k) = log(1 - 2*sqrt(5)/(1 + sqrt(5) - 2*m)) / sqrt(5) and Sum_{k>=1} L(k)/(k*m^k) = log(m^2 / (m^2 - m - 1)). - Vaclav Kotesovec, May 08 2021

Examples

			0.86081788192800807777886646590121085084914136508057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[Fibonacci[n]/n/2^n, {n, 1, Infinity}], 10, 100][[1]]
  • PARI
    suminf(k=1, fibonacci(k)/(k*2^k)) \\ Michel Marcus, May 07 2021

Formula

Equals Sum_{k>=0} (-1)^k/A002457(k).
Equals 4*log(phi)/sqrt(5) = 4*arcsinh(1/2)/sqrt(5) = arccosh(7/2)/sqrt(5) = 4*A002390/A002163.
Equals Integral_{x>=2} 1/(x^2 - x - 1) dx.

A352485 Decimal expansion of the probability that when a unit interval is broken at two points uniformly and independently chosen at random along its length the lengths of the resulting three intervals are the altitudes of a triangle.

Original entry on oeis.org

2, 3, 2, 9, 8, 1, 4, 5, 8, 3, 1, 3, 6, 0, 9, 6, 9, 3, 3, 3, 4, 6, 3, 9, 7, 5, 9, 0, 8, 1, 4, 5, 3, 0, 2, 1, 0, 1, 8, 9, 6, 9, 6, 3, 8, 0, 9, 6, 6, 9, 5, 1, 7, 1, 4, 1, 6, 8, 1, 4, 6, 4, 9, 5, 8, 2, 1, 4, 6, 9, 1, 7, 1, 0, 6, 7, 1, 6, 7, 0, 7, 2, 6, 7, 5, 7, 6, 6, 3, 5, 2, 7, 3, 3, 2, 7, 8, 9, 2, 9, 7, 5, 1, 9, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 18 2022

Keywords

Examples

			0.23298145831360969333463975908145302101896963809669...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[24*Sqrt[5]*Log[GoldenRatio]/25 - 4/5, 10, 100][[1]]

Formula

Equals 12*sqrt(5)*log((3+sqrt(5))/2)/25 - 4/5.
Equals 24*sqrt(5)*log(phi)/25 - 4/5, where phi is the golden ratio (A001622).

A358516 Decimal expansion of Sum_{k >= 1} (-1)^(k+1)*1/((k+2)*(k+3)).

Original entry on oeis.org

0, 5, 2, 9, 6, 1, 0, 2, 7, 7, 8, 6, 5, 5, 7, 2, 8, 5, 5, 0, 1, 1, 3, 0, 9, 0, 9, 5, 8, 3, 0, 1, 9, 8, 0, 2, 8, 1, 7, 6, 6, 6, 9, 3, 5, 3, 8, 7, 1, 7, 7, 1, 7, 4, 9, 0, 8, 0, 2, 6, 6, 8, 5, 6, 5, 3, 4, 5, 3, 9, 1, 0, 6, 0, 6, 0, 5, 6, 0, 9, 7, 8, 7, 8, 3, 9, 3, 3, 2, 0, 6, 5, 9, 5, 0, 4
Offset: 0

Views

Author

Claude H. R. Dequatre, Nov 20 2022

Keywords

Examples

			0.0529610277865572855011309095830198028176669353...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[2*Log[2] - 4/3, 10, 120][[1]]] (* Amiram Eldar, Nov 21 2022 *)
  • PARI
    2*log(2) - 4/3

Formula

Equals Sum_{k >= 1} (-1)^(k+1)*/((k+2)*(k+3)) = A016627 -4/3.
Equals 2*log(2) - 4/3 = Sum_{k >= 2} 1/(4*k^3 - k) = Sum_{k >= 1} (zeta(2*k + 1) - 1)/(4^k). [from the Shamos reference]
Equals Sum_{k >= 1} 1/((2^k)*(4*k + 12)). [from the Shamos reference]
Equals Sum_{k>=3} (-1)^(k+1)/A002378(k). - Amiram Eldar, Nov 21 2022

Extensions

Missing terms 6, 0 inserted after a(74) by Georg Fischer, Feb 07 2025

A358646 Decimal expansion of 3/4 + log(4).

Original entry on oeis.org

2, 1, 3, 6, 2, 9, 4, 3, 6, 1, 1, 1, 9, 8, 9, 0, 6, 1, 8, 8, 3, 4, 4, 6, 4, 2, 4, 2, 9, 1, 6, 3, 5, 3, 1, 3, 6, 1, 5, 1, 0, 0, 0, 2, 6, 8, 7, 2, 0, 5, 1, 0, 5, 0, 8, 2, 4, 1, 3, 6, 0, 0, 1, 8, 9, 8, 6, 7, 8, 7, 2, 4, 3, 9, 3, 9, 3, 8, 9, 4, 3, 1, 2, 1, 1, 7, 2, 6, 6, 5
Offset: 1

Views

Author

Stefano Spezia, Nov 24 2022

Keywords

Examples

			2.13629436111989061883446424291635313615100026872051050824136...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[3/4+Log[4],90]]]

Formula

Equals 2 + Integral_{x=0..1} (1 + x)*log(1 + x) - x dx. - Kritsada Moomuang, May 23 2025
Equals 2 + Sum_{k>=2} (-1)^k/(k*(k+1)*(k-1)). - Davide Rotondo, May 24 2025
Equals Integral_{x=1..2} 2/x + x/2 dx = 3/2 + Integral_{x=1..2} 2/x - x/2 dx. - Jason Bard, Jun 29 2025

A386733 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} {1/(x+y)} dx dy, where {} denotes fractional part.

Original entry on oeis.org

5, 6, 3, 8, 2, 7, 3, 2, 7, 6, 9, 5, 7, 7, 7, 4, 0, 0, 5, 9, 8, 2, 5, 6, 6, 5, 9, 5, 9, 3, 3, 4, 0, 5, 4, 1, 5, 4, 1, 5, 2, 5, 3, 1, 8, 1, 1, 7, 1, 1, 1, 2, 8, 9, 3, 7, 3, 5, 8, 0, 9, 0, 4, 3, 0, 1, 7, 8, 3, 5, 0, 8, 7, 3, 7, 7, 8, 8, 9, 9, 4, 2, 9, 4, 9, 1, 2, 2, 0, 3, 6, 8, 2, 9, 5, 8, 0, 2, 2, 4, 3, 2, 0, 0, 0, 8
Offset: 0

Views

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.56382732769577740059825665959334054154152531811711...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Log[2] - Pi^2/12, 10, 120][[1]]
  • PARI
    2*log(2) - zeta(2)/2

Formula

Equals 2*log(2) - Pi^2/12 = A016627 - A072691.

A083680 Decimal expansion of (3/2)*log(3/2).

Original entry on oeis.org

6, 0, 8, 1, 9, 7, 6, 6, 2, 1, 6, 2, 2, 4, 6, 5, 7, 2, 9, 6, 7, 0, 1, 9, 6, 7, 3, 1, 9, 6, 5, 2, 3, 7, 0, 4, 8, 5, 7, 9, 8, 5, 6, 3, 5, 1, 9, 3, 7, 4, 1, 2, 9, 6, 4, 2, 1, 0, 2, 1, 4, 8, 6, 2, 1, 6, 1, 5, 1, 0, 0, 6, 8, 7, 3, 3, 7, 1, 3, 7, 6, 9, 0, 1, 6, 2, 8, 6, 4, 1, 7, 2, 5, 9, 7, 0, 1, 0, 1, 8, 6, 8, 9, 5
Offset: 0

Views

Author

Benoit Cloitre, Jun 15 2003

Keywords

Comments

More generally for x > 1: Sum_{k>=1} H(k)/x^k = x/(1-x)*log(1-1/x).

Examples

			0.60819766216224657296701967319652370485798563519374...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=1} H(k)/3^k where H(k) is the k-th harmonic number.

A133362 Decimal expansion of 1/(2 log 2).

Original entry on oeis.org

7, 2, 1, 3, 4, 7, 5, 2, 0, 4, 4, 4, 4, 8, 1, 7, 0, 3, 6, 7, 9, 9, 6, 2, 3, 4, 0, 5, 0, 0, 9, 4, 6, 0, 6, 8, 7, 1, 3, 3, 2, 2, 9, 7, 7, 0, 7, 6, 4, 9, 2, 9, 6, 7, 0, 6, 7, 7, 2, 4, 7, 0, 3, 4, 6, 5, 5, 5, 4, 6, 0, 9, 5, 9, 0, 5, 9, 2, 5, 3, 9, 9, 4, 2, 7, 6, 3, 3, 1, 1, 4, 4, 6, 7, 5, 3, 1, 7, 2, 2, 4, 8, 4, 9, 8
Offset: 0

Views

Author

Jonathan Vos Post, Oct 26 2007

Keywords

Comments

PrimePi(n) = A000720(n) => (log n)/(2 log 2) for all n > 2. An elegant proof is given in Kontoyiannis.
Base 4 logarithm of the natural logarithm base. - Alonso del Arte, Aug 31 2014

Examples

			0.7213475204444817036799623405009460...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.7 Lengyel's constant p. 319 and Section 5.11 Feller's coin tossing p. 341.

Crossrefs

Cf. A000720, A016627 (reciprocal).

Programs

Extensions

More terms from R. J. Mathar, Nov 09 2007

A145425 Decimal expansion of Sum_{k>=1} 1/(k*(36k^2-1)).

Original entry on oeis.org

0, 3, 4, 2, 1, 2, 7, 9, 4, 1, 2, 2, 0, 5, 5, 1, 5, 5, 9, 2, 7, 3, 3, 2, 0, 9, 8, 3, 0, 0, 1, 4, 1, 6, 9, 3, 1, 2, 2, 2, 3, 6, 1, 0, 5, 4, 5, 4, 6, 3, 4, 6, 8, 5, 8, 4, 3, 4, 0, 1, 5, 1, 9, 4, 4, 3, 0, 2, 8, 6, 8, 3, 7, 6, 7, 3, 0, 2, 8, 8, 1, 5, 2, 2, 1, 5, 0, 2, 8, 6, 2, 1, 3
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.03421279412205515...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.27.

Crossrefs

Programs

  • Maple
    2*ln(2)-3+3/2*ln(3) ;
  • Mathematica
    RealDigits[3*Log[3]/2 + 2*Log[2] - 3, 10, 120, -1][[1]] (* Amiram Eldar, Aug 23 2024 *)

Formula

Equals A016627+3*(A156057-1).
Equals (3/2) * log(3) + 2*log(2) - 3. - Sean A. Irvine, Apr 05 2025

A157700 Decimal expansion of log(4/(1 + sqrt(2))).

Original entry on oeis.org

5, 0, 4, 9, 2, 0, 7, 7, 4, 1, 0, 0, 3, 4, 7, 5, 9, 3, 6, 0, 1, 8, 5, 4, 9, 1, 7, 9, 3, 6, 5, 6, 0, 8, 2, 7, 1, 2, 2, 8, 3, 9, 9, 4, 0, 4, 5, 8, 8, 7, 5, 0, 9, 7, 4, 8, 8, 0, 6, 4, 4, 1, 0, 3, 3, 3, 4, 1, 0, 0, 5, 9, 7, 1, 7, 3, 6, 3, 3, 4, 3, 3, 7, 8, 0, 1, 9, 7, 6, 2, 0, 8, 2, 5, 8, 1, 3, 3, 2, 2, 2, 7, 2, 6, 3
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

Equals Sum_{n>=2, n even} binomial(2n,n)/(n*4^n) = A016627-A091648.

Examples

			0.5049207741003475936018...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(4/(1+Sqrt(2))); // G. C. Greubel, Oct 02 2018
  • Maple
    log(4/(1+sqrt(2))) ;
  • Mathematica
    RealDigits[Log[4/(1+Sqrt[2])],10,120][[1]] (* Harvey P. Dale, Jun 08 2014 *)
  • PARI
    default(realprecision, 100); log(4/(1+sqrt(2))) \\ G. C. Greubel, Oct 02 2018
    

A216701 Decimal expansion of sqrt(2)/(2*log(2)).

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 9, 4, 4, 6, 5, 9, 6, 7, 8, 9, 4, 8, 1, 7, 4, 8, 2, 7, 9, 1, 0, 5, 5, 3, 2, 2, 6, 2, 7, 6, 9, 1, 5, 5, 0, 9, 8, 0, 8, 8, 6, 8, 2, 0, 2, 9, 8, 8, 7, 7, 9, 2, 5, 6, 4, 3, 7, 7, 4, 6, 7, 2, 6, 2, 3, 2, 1, 1, 4, 6, 7, 1, 8, 4, 5, 2, 2, 6, 1, 0, 5, 5, 6, 6, 5, 5, 7, 6, 1, 7, 1, 3, 9, 5, 0, 1, 8, 8, 4
Offset: 1

Views

Author

John W. Nicholson, Sep 16 2012

Keywords

Examples

			1.020139446596789481748279105532262769155098088682029887792564377467...
		

Crossrefs

Cf. A002193 (sqrt(2)), A016627 (2*log(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(2)/(2*Log(2)); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[Sqrt[2]/(2*Log[2]), 10, 105][[1]] (* T. D. Noe, Sep 17 2012 *)
  • PARI
    default(realprecision, 100); sqrt(2)/(2*log(2)) \\ G. C. Greubel, Oct 05 2018
    
Previous Showing 21-30 of 44 results. Next