cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A280234 Decimal expansion of log(27)/log(27/4).

Original entry on oeis.org

1, 7, 2, 5, 9, 8, 2, 4, 5, 7, 8, 7, 8, 7, 1, 9, 1, 0, 8, 7, 1, 9, 0, 8, 5, 3, 1, 9, 4, 0, 6, 2, 0, 8, 5, 3, 6, 6, 5, 9, 6, 0, 2, 6, 6, 2, 0, 5, 9, 5, 4, 9, 4, 2, 7, 6, 7, 8, 7, 5, 2, 9, 0, 9, 1, 6, 0, 3, 5, 0, 9, 8, 6, 4, 8, 6, 6, 0, 6, 8, 9, 9, 2, 4, 3, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Appears as an exponent in an upper bound on the number of partitions of a set into disjoint unions; related to the ASTRAL algorithm in phylogenetic reconstruction.

Examples

			1.72598245787871910871908531940620853665960266205954942767875290916035...
		

Crossrefs

Cf. A016627 (log(4)), A016650 (log(27)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(27)/Log(27/4); // G. C. Greubel, Oct 13 2018
  • Mathematica
    RealDigits[N[Log[27]/(Log[27/4]), 100]] [[1]] (* Vincenzo Librandi, Feb 24 2017 *)
  • PARI
    log(27)/log(27/4)
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A334388 Decimal expansion of Sum_{k>=1} A007953(k) / (k*(k+1)) where A007953(k) is the sum of digits of the integer k.

Original entry on oeis.org

2, 5, 5, 8, 4, 2, 7, 8, 8, 1, 1, 0, 4, 4, 9, 5, 2, 0, 4, 4, 6, 4, 4, 3, 4, 9, 4, 9, 6, 4, 9, 2, 9, 3, 5, 6, 4, 0, 0, 1, 2, 2, 3, 8, 7, 6, 2, 5, 4, 1, 9, 2, 1, 9, 5, 5, 9, 2, 5, 8, 6, 5, 5, 6, 6, 3, 0, 6, 3, 6, 2, 3, 2, 9, 7, 4, 8, 3, 6, 0, 8, 9, 1, 5, 1, 1, 0, 8, 0, 0, 5, 6, 5, 5, 1, 0, 9, 2, 2, 0
Offset: 1

Views

Author

Bernard Schott, Sep 08 2020

Keywords

Comments

This series is convergent.
Jeffrey Shallit generalizes this result to any base b (see Amer. Math. Month. link): Sum_{k>=1} digsum(k)_b / (k*(k+1)) = (b/(b-1)) * log(b) where digsum(k)_b is the sum of the digits of k when expressed in base b.
Sum_{n <= x} s(floor(x/n)) = kx + O(x^(2/3 + o(1))) where s(n) is the digital sum A007953 and k is this constant. See Bordellès, Dai, Heyman, Pan, & Shparlinski, Example 3.4. - Charles R Greathouse IV, Mar 22 2022

Examples

			2.5584278811044952044644349496492935640012238762541921955925865566
		

Crossrefs

Cf. A002392 (log(10)), A007953 (digsum), A016627 (for base 2).
Cf. A308314.

Programs

Formula

Equals 1/(1*2) + 2/(2*3) + 3/(3*4) + 4/(4*5) + ... + 1/(10*11) + 2/(11*12) + ...
Equals (10/9) * log(10).

Extensions

a(90) corrected by Georg Fischer, Jul 12 2021

A348373 Decimal expansion of Sum_{k>=1} H(k)^2/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

2, 1, 2, 5, 3, 8, 7, 0, 8, 0, 7, 6, 6, 4, 2, 7, 8, 6, 1, 1, 3, 9, 5, 1, 7, 6, 9, 2, 9, 7, 2, 6, 9, 0, 1, 6, 0, 9, 4, 9, 5, 0, 2, 8, 5, 2, 8, 0, 1, 3, 4, 4, 0, 2, 4, 6, 0, 2, 4, 2, 2, 3, 6, 2, 9, 9, 3, 6, 7, 2, 8, 5, 2, 6, 6, 3, 0, 3, 5, 3, 4, 6, 0, 3, 3, 5, 7, 7, 1, 6, 4, 0, 6, 3, 6, 8, 5, 6, 9, 6, 2, 3, 6, 7, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2021

Keywords

Examples

			2.12538708076642786113951769297269016094950285280134...
		

Crossrefs

Similar constants: A016627, A076788.

Programs

  • Mathematica
    RealDigits[Pi^2/6 + Log[2]^2, 10, 100][[1]]

Formula

Equals Pi^2/6 + log(2)^2 = A013661 + A253191.

A359532 Decimal expansion of 2*log(2)/Pi.

Original entry on oeis.org

4, 4, 1, 2, 7, 1, 2, 0, 0, 3, 0, 5, 3, 0, 3, 1, 8, 6, 7, 9, 2, 9, 1, 2, 8, 6, 4, 2, 3, 5, 9, 9, 5, 3, 8, 1, 9, 6, 5, 3, 7, 9, 4, 9, 7, 4, 5, 9, 3, 1, 0, 9, 4, 0, 9, 7, 8, 5, 2, 6, 4, 6, 7, 4, 1, 4, 2, 4, 3, 5, 3, 4, 0, 9, 3, 3, 7, 3, 3, 6, 4, 9, 9, 5, 9, 8, 6, 2, 2, 3, 7, 0, 7, 9, 3, 5, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Comments

2*log(2)*n/Pi is also the dominant term in the asymptotic expansion of Sum_{k=1..n-1} (-1)^(k+1)*csc(Pi*k/n) at n tending to infinity. - Iaroslav V. Blagouchine, Apr 10 2025

Examples

			0.441271200305303186792912864235995381965...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[2Log[2]/Pi,98]]]

Formula

Equals 2*A284983.
Equals Sum_{i>=0} (-1/64)^i*binomial(2*i, i)^3*(4*i + 1)*H_{2*i}, where H_m is the m-th harmonic number (negated).

A387235 Decimal expansion of 2*log(2)/3.

Original entry on oeis.org

4, 6, 2, 0, 9, 8, 1, 2, 0, 3, 7, 3, 2, 9, 6, 8, 7, 2, 9, 4, 4, 8, 2, 1, 4, 1, 4, 3, 0, 5, 4, 5, 1, 0, 4, 5, 3, 8, 3, 6, 6, 6, 7, 5, 6, 2, 4, 0, 1, 7, 0, 1, 6, 9, 4, 1, 3, 7, 8, 6, 6, 7, 2, 9, 9, 5, 5, 9, 5, 7, 4, 7, 9, 7, 9, 7, 9, 6, 4, 7, 7, 0, 7, 0, 5, 7, 5, 5, 5, 1, 3, 3, 0, 9, 4, 5, 7, 9, 1, 6
Offset: 0

Views

Author

Stefano Spezia, Aug 23 2025

Keywords

Comments

Area enclosed by the curve of the equation x^6 + y^6 - x^3*y + x*y^3 = 0.
The asymptotic mean of A256232. - Amiram Eldar, Aug 23 2025

Examples

			0.46209812037329687294482141430545104538366675624...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2Log[2]/3,10,100][[1]]

Formula

Equals log(4)/3 = A010701*A016627.
Equals Sum_{k>=0} (-1)^k/((3*k + 1)*(3*k + 2)) = Integral_{x=0..1} x^2*log(1 + 1/x^3) = -Integral_{x=0..1} log[1 - x^6]/x^4. [Shamos]
Equals A016627/3 = 2*A193535. - Hugo Pfoertner, Aug 23 2025

A196565 Decimal expansion of log(log(4)).

Original entry on oeis.org

3, 2, 6, 6, 3, 4, 2, 5, 9, 9, 7, 8, 2, 8, 0, 9, 8, 2, 4, 0, 4, 7, 9, 2, 9, 6, 3, 2, 2, 5, 5, 0, 7, 0, 9, 8, 6, 2, 1, 2, 3, 6, 6, 8, 6, 5, 2, 3, 1, 4, 9, 9, 9, 1, 0, 6, 7, 0, 0, 2, 2, 9, 5, 8, 2, 2, 8, 3, 2, 0, 0, 6, 6, 5, 0, 3, 4, 1, 9, 7, 7, 0, 5, 6, 4, 0, 7, 5
Offset: 0

Views

Author

Kausthub Gudipati, Oct 04 2011

Keywords

Examples

			0.3266342599782809824047929632255070986212366865231499910670022958228...
		

Crossrefs

Programs

Formula

From Amiram Eldar, Jun 12 2023: (Start)
Equals log(A016627).
Equals log(2) + log(log(2)) = A002162 - A074785. (End)

A241215 Decimal expansion of Sum_{n>=1} H(n)^4/(n+1)^3 where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 8, 0, 1, 6, 1, 3, 2, 6, 8, 0, 4, 3, 4, 1, 2, 9, 0, 3, 7, 2, 9, 4, 8, 8, 9, 4, 2, 0, 2, 0, 8, 8, 8, 4, 3, 0, 3, 1, 3, 7, 7, 5, 8, 2, 7, 7, 8, 7, 8, 9, 3, 3, 0, 0, 8, 7, 3, 3, 9, 4, 9, 2, 5, 4, 8, 0, 4, 4, 4, 8, 1, 8, 8, 4, 0, 8, 9, 3, 3, 3, 7, 5, 3, 0, 9, 4, 5, 7, 4, 3, 3, 0, 4, 2, 7, 1, 9, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 17 2014

Keywords

Examples

			1.80161326804341290372948894202088843...
		

Crossrefs

Programs

  • Mathematica
    37/180*Pi^4*Zeta[3] - 5/6*Pi^2*Zeta[5] - 109/8*Zeta[7] // RealDigits[#, 10, 100]& // First
  • PARI
    37/2*zeta(3)*zeta(4) - 5*zeta(2)*zeta(5) - 109/8*zeta(7) \\ Stefano Spezia, Jan 19 2025

Formula

Equals (37/2)*zeta(3)*zeta(4) - 5*zeta(2)*zeta(5) - (109/8)*zeta(7).
Equals (37/180)*Pi^4*zeta(3) - (5/6)*Pi^2*zeta(5) - (109/8)*zeta(7).

A282821 Decimal expansion of Sum_{k >= 0} (4/(4*k+1) - 3/(3*k+1) + 2/(2*k+1) - 1/(k+1)).

Original entry on oeis.org

2, 4, 8, 1, 7, 1, 4, 1, 1, 4, 4, 7, 5, 3, 4, 9, 7, 0, 3, 9, 2, 7, 5, 7, 5, 3, 1, 4, 7, 2, 5, 7, 6, 7, 8, 5, 9, 3, 6, 2, 8, 1, 6, 4, 1, 0, 7, 0, 8, 3, 3, 4, 7, 1, 5, 7, 0, 3, 8, 8, 8, 3, 7, 5, 4, 7, 0, 5, 7, 3, 2, 8, 2, 6, 0, 0, 4, 8, 7, 6, 8, 5, 1, 9, 0, 8, 4, 7, 9, 2, 1
Offset: 1

Views

Author

Bruno Berselli, Mar 03 2017

Keywords

Comments

It is known that Sum_{k >= 0} Sum_{i = 1..h} (-1)^i*i/(i*k + 1) diverges for h = 3. This is the case h = 4, A016627 corresponds to the case h = 2.

Examples

			2.48171411447534970392757531472576785936281641070833471570388837547057328...
		

Crossrefs

Cf. A016627.

Programs

  • Mathematica
    RealDigits[(3 - Sqrt[3]) Pi/6 + Log[32] - Log[27]/2, 10, 100][[1]]

Formula

Equals (3 - sqrt(3))*Pi/6 + log(32) - log(27)/2.

A331239 Decimal expansion of Sum_{k>=0} (-1)^k/AGM(1, 1+k).

Original entry on oeis.org

6, 0, 9, 2, 1, 5, 1, 5, 0, 4, 5, 2, 4, 4, 9, 2, 2, 8, 7, 3, 0, 4, 7, 3, 3, 7, 1, 3, 4, 9, 1, 6, 6, 0, 5, 1, 1, 1, 8, 3, 9, 3, 9, 2, 2, 8, 5, 6, 5, 9, 9, 9, 7, 3, 5, 7, 8, 7, 2, 0, 3, 1, 3, 8, 1, 9, 5, 6, 7, 5, 6, 0, 2, 5, 4, 2, 6, 7, 1, 2, 2, 7, 6, 1, 2, 3, 0
Offset: 0

Views

Author

Daniel Hoyt, Jan 13 2020

Keywords

Comments

AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This series is closely related to A188859 (Sum_{k>=0} (-1)^k/((1+(1+k))/2)) and A113024 (Sum_{k>=0} (-1)^k/sqrt(1+k)). The denominators of these alternating series differ by being arithmetic, geometric, or arithmetic-geometric means of 1 and k.

Examples

			0.6092151504524492287304733713491660511183939228565999735...
		

Crossrefs

Programs

  • PARI
    sumalt(k=0, (-1)^k/agm(1,1+k))

A336518 Decimal expansion of 1 + Pi/log(4).

Original entry on oeis.org

3, 2, 6, 6, 1, 8, 0, 0, 7, 0, 9, 1, 3, 5, 9, 6, 9, 0, 4, 8, 1, 3, 8, 4, 1, 4, 7, 2, 8, 5, 8, 3, 3, 3, 4, 0, 5, 0, 8, 5, 9, 3, 0, 7, 3, 3, 8, 6, 1, 8, 9, 7, 7, 9, 2, 0, 9, 3, 0, 0, 8, 2, 7, 3, 9, 7, 0, 3, 0, 0, 4, 7, 6, 8, 6, 0, 6, 5, 2, 5, 5, 1, 1, 2, 9, 5, 4
Offset: 1

Views

Author

Peter Luschny, Aug 10 2020

Keywords

Examples

			3.26618007091359690481384147285833340508593073386189779209300827397030...
		

Crossrefs

Programs

  • Maple
    Digits := 100: 1 + Pi/log(4): evalf(%, 100)*10^86:
    ListTools:-Reverse(convert(floor(%), base, 10));
  • PARI
    1 + Pi/log(4) \\ Michel Marcus, Aug 10 2020

Formula

Equals limit_{z->0} -z*Z(1-z, 1) - z*(Z(1-z, 1/4) - Z(1-z, 3/4))/(2^(1-z) - 2), where Z(v, w) is the Hurwitz zeta function.
Equals 1 + (PolyGamma(3/4) - PolyGamma(1/4)) / log(4).
Previous Showing 31-40 of 44 results. Next