cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A016940 a(n) = (6*n + 2)^8.

Original entry on oeis.org

256, 16777216, 1475789056, 25600000000, 208827064576, 1099511627776, 4347792138496, 14048223625216, 39062500000000, 96717311574016, 218340105584896, 457163239653376, 899194740203776, 1677721600000000, 2992179271065856, 5132188731375616, 8507630225817856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+2)^8: n in [0..20]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6*Range[0,20]+2)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{256,16777216,1475789056,25600000000,208827064576,1099511627776,4347792138496,14048223625216,39062500000000},20] (* Harvey P. Dale, Sep 06 2020 *)

Formula

From Amiram Eldar, Mar 29 2022: (Start)
a(n) = A016933(n)^8 = A016934(n)^4 = A016936(n)^2.
a(n) = 2^8*A016784(n).
Sum_{n>=0} 1/a(n) = PolyGamma(7, 1/3)/8465264640. (End)

A016941 a(n) = (6*n + 2)^9.

Original entry on oeis.org

512, 134217728, 20661046784, 512000000000, 5429503678976, 35184372088832, 165216101262848, 618121839509504, 1953125000000000, 5416169448144896, 13537086546263552, 31087100296429568, 66540410775079424, 134217728000000000, 257327417311663616, 472161363286556672
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+2)^9: n in [0..25]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    (6*Range[0,20]+2)^9 (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210,120,-45,10,-1},{512,134217728,20661046784,512000000000,5429503678976,35184372088832,165216101262848,618121839509504,1953125000000000,5416169448144896},20] (* Harvey P. Dale, Sep 21 2013 *)

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Harvey P. Dale, Sep 21 2013
From Amiram Eldar, Mar 29 2022: (Start)
a(n) = A016933(n)^9 = A016935(n)^3.
a(n) = 2^9*A016785(n).
Sum_{n>=0} 1/a(n) = 809*Pi^9/(14285134080*sqrt(3)) + 9841*zeta(9)/10077696. (End)

A016942 a(n) = (6*n + 2)^10.

Original entry on oeis.org

1024, 1073741824, 289254654976, 10240000000000, 141167095653376, 1125899906842624, 6278211847988224, 27197360938418176, 97656250000000000, 303305489096114176, 839299365868340224, 2113922820157210624, 4923990397355877376, 10737418240000000000, 22130157888803070976
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 29 2022: (Start)
a(n) = A016933(n)^10 = A016934(n)^5 = A016937(n)^2.
a(n) = 2^10*A016786(n).
Sum_{n>=0} 1/a(n) = PolyGamma(9, 1/3)/21941965946880. (End)

A155156 Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.

Original entry on oeis.org

8, 14, 24, 20, 34, 48, 26, 44, 62, 80, 32, 54, 76, 98, 120, 38, 64, 90, 116, 142, 168, 44, 74, 104, 134, 164, 194, 224, 50, 84, 118, 152, 186, 220, 254, 288, 56, 94, 132, 170, 208, 246, 284, 322, 360, 62, 104, 146, 188, 230, 272, 314, 356, 398, 440, 68, 114, 160, 206, 252, 298, 344, 390, 436, 482, 528
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2009

Keywords

Comments

First column: A016933, second column: A017317, third column: A063151, fourth column: 2*A017209. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   8;
  14,  24;
  20,  34,  48;
  26,  44,  62,  80;
  32,  54,  76,  98, 120;
  38,  64,  90, 116, 142, 168;
  44,  74, 104, 134, 164, 194, 224;
  50,  84, 118, 152, 186, 220, 254, 288;
  56,  94, 132, 170, 208, 246, 284, 322, 360;
  62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Maple
    seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # G. C. Greubel, Mar 20 2021
  • Mathematica
    T[n_,k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • Sage
    flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 20 2021

Formula

T(n, k) = 2*A083487(n, k). - R. J. Mathar, Jan 05 2011
Sum_{k=0..n} T(n,k) = n*(2*n^2 + 5*n + 1) = 2*A162254(n) = A163832(n). - G. C. Greubel, Mar 20 2021

Extensions

Edited by Robert Hochberg, Jun 21 2010

A278481 Number of neighbors of the n-th term in a full isosceles triangle read by rows.

Original entry on oeis.org

2, 4, 4, 4, 6, 4, 4, 6, 6, 4, 4, 6, 6, 6, 4, 4, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2016

Keywords

Comments

Apart from the left border and the right border, the rest of the elements are 6's.
For the same idea but for a right triangle see A278480; for a square array see A278545, for a square spiral see A010731; and for a hexagonal spiral see A010722.

Examples

			The sequence written as an isosceles triangle begins:
.
.                     2;
.                   4,  4;
.                 4,  6,  4;
.               4,  6,  6,  4;
.             4,  6,  6,  6,  4;
.           4,  6,  6,  6,  6,  4;
.         4,  6,  6,  6,  6,  6,  4;
.       4,  6,  6,  6,  6,  6,  6,  4;
.     4,  6,  6,  6,  6,  6,  6,  6,  4;
.   4,  6,  6,  6,  6,  6,  6,  6,  6,  4;
...
		

Crossrefs

Row sums give A016933.
Left border gives A040002, the same as the right border.
Middle column gives the elements > 1 of A134201, also twice A122553.

A296050 Number of permutations p of [n] such that min_{j=1..n} |p(j)-j| = 1.

Original entry on oeis.org

0, 0, 1, 2, 8, 40, 236, 1648, 13125, 117794, 1175224, 12903874, 154615096, 2007498192, 28075470833, 420753819282, 6726830163592, 114278495205524, 2055782983578788, 39039148388975552, 780412763620655061, 16381683795665956242, 360258256118419518680, 8283042472303599966974
Offset: 0

Views

Author

Alois P. Heinz, Jan 21 2019

Keywords

Examples

			a(2) = 1: 21.
a(3) = 2: 231, 312.
a(4) = 8: 2143, 2341, 2413, 3142, 3421, 4123, 4312, 4321.
a(5) = 40: 21453, 21534, 23154, 23451, 23514, 24153, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34152, 34251, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45132, 45213, 45231, 51234, 51423, 51432, 53124, 53214, 53412, 53421, 54132, 54213, 54231.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, k) option remember; (n-> `if`(n=0, `if`(k=1, 1, 0), add(
          `if`(n=j, 0, b(s minus {j}, min(k, abs(n-j)))), j=s)))(nops(s))
        end:
    a:= n-> b({$1..n}, n):
    seq(a(n), n=0..14);
    # second Maple program:
    a:= n-> (f-> f(1)-f(2))(k-> `if`(n=0, 1, LinearAlgebra[Permanent](
            Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0))))):
    seq(a(n), n=0..14);
    # third Maple program:
    g:= proc(n) g(n):= `if`(n<2, 1-n, (n-1)*(g(n-1)+g(n-2))) end:
    h:= proc(n) h(n):= `if`(n<7, [1, 0$3, 1, 4, 29][n+1], n*h(n-1)+4*h(n-2)
          -3*(n-3)*h(n-3)+(n-4)*h(n-4)+2*(n-5)*h(n-5)-(n-7)*h(n-6)-h(n-7))
        end:
    a:= n-> g(n)-h(n):
    seq(a(n), n=0..25);
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1-n, (n-1)(g[n-1] + g[n-2])];
    h[n_] := h[n] = If[n < 7, {1, 0, 0, 0, 1, 4, 29}[[n+1]],
         n h[n-1] + 4h[n-2] - 3(n-3)h[n-3] + (n-4)h[n-4] +
         2(n-5)h[n-5] - (n-7)h[n-6] - h[n-7]];
    a[n_] := g[n] - h[n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 30 2021, after third Maple program *)

Formula

a(n) = A000142(n) - A001883(n) - A002467(n).
a(n) = A000166(n) - A001883(n).
a(n) = Sum_{k=1..n} A323671(n,k).
a(n) is odd <=> n in { A016933 }.
a(n) is even <=> n in { A047252 }.

A016943 a(n) = (6*n + 2)^11.

Original entry on oeis.org

2048, 8589934592, 4049565169664, 204800000000000, 3670344486987776, 36028797018963968, 238572050223552512, 1196683881290399744, 4882812500000000000, 16985107389382393856, 52036560683837093888, 143746751770690322432, 364375289404334925824, 858993459200000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A016787(n)*2^11. - Zerinvary Lajos, Jun 22 2009
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016933(n)^9 = A016935(n)^3.
Sum_{n>=0} 1/a(n) = 1847*Pi^11/(1285662067200*sqrt(3)) + 88573*zeta(11)/362797056. (End)

A080063 a(n) = n mod (spf(n)+1), where spf(n) is the smallest prime dividing n (A020639).

Original entry on oeis.org

1, 2, 3, 1, 5, 0, 7, 2, 1, 1, 11, 0, 13, 2, 3, 1, 17, 0, 19, 2, 1, 1, 23, 0, 1, 2, 3, 1, 29, 0, 31, 2, 1, 1, 5, 0, 37, 2, 3, 1, 41, 0, 43, 2, 1, 1, 47, 0, 1, 2, 3, 1, 53, 0, 1, 2, 1, 1, 59, 0, 61, 2, 3, 1, 5, 0, 67, 2, 1, 1, 71, 0, 73, 2, 3, 1, 5, 0, 79, 2, 1, 1, 83, 0, 1, 2, 3, 1, 89, 0, 3, 2, 1, 1, 5, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

a(n) = 0 iff n mod 6 = 0 (A008588);
a(n) = 2 iff n mod 6 = 2 (A016933);
for n>1: a(n)=n iff n is prime (A000040, A008578).

Crossrefs

A140164 Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, ...].

Original entry on oeis.org

1, 2, 4, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326
Offset: 1

Views

Author

Gary W. Adamson, May 10 2008

Keywords

Comments

Sum of antidiagonal terms of the following arithmetic array:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 4, 7, 10, 13, 16, 19, 22, ...
1, 5, 9, 13, 17, 21, 25, 29, ...
1, 6, 11, 16, 21, 26, 31, 36, ...
1, 7, 13, 19, 25, 31, 37, 43, ...
1, 8, 15, 22, 29, 36, 43, 50, ...
...
For [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55, ...], see A??????.

Examples

			a(4) = 8 = (1, 3, 3, 1) dot (1, 1, 1, 1) = (1 + 3 + 3 + 1).
a(5) = 14 = (4 + 5 + 4 + 1).
		

Crossrefs

Cf. A028387.

Programs

  • GAP
    Concatenation([1,2,4], List([4..60], n-> 6*n-16)); # G. C. Greubel, May 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1+x^2+2*x^3+2*x^4)/(1-x)^2 )); // G. C. Greubel, May 12 2019
    
  • Maple
    From R. J. Mathar, May 03 2010: (Start)
    A028387 := proc(n) option remember; if n <= 2 then op(n+1,[1,5,11]) ; else 3*procname(n-1)-3*procname(n-2)+procname(n-3) ; end if; end proc:
    read("transforms") ; L := [1,1,1,1,-1, seq((-1)^(n+1)*A028387(n), n=0..60)]; BINOMIAL(L) ; (End)
  • Mathematica
    Table[If[n < 4, 2^(n - 1), 6 n - 16], {n, 60}] (* or *)
    Rest@CoefficientList[Series[x*(1+x^2+2x^3+2x^4)/(1-x)^2, {x, 0, 60}], x] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(n)=if(n<4,2^(n-1),6*n-16) \\ Charles R Greathouse IV, Jul 17 2016
    
  • Sage
    (x*(1+x^2+2*x^3+2*x^4)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
    

Formula

Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55,...]; where A028387 = (1, 5, 11, 19, 29, 41,...), such that A028387(n) = (2*T(n) - 1).
From R. J. Mathar, May 03 2010: (Start)
G.f.: x*(1+x^2+2*x^3+2*x^4)/(1-x)^2. [G.f. amended by Georg Fischer, May 12 2019]
a(n) = A016933(n-2), n>2. (End)
a(n) = 2*(3n-5), n >= 3, if offset is 0 instead of 1. - Daniel Forgues, Jul 17 2016

Extensions

More terms from R. J. Mathar, May 03 2010

A168286 a(n) = (6*n + 3*(-1)^n + 1)/2.

Original entry on oeis.org

2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 32, 38, 38, 44, 44, 50, 50, 56, 56, 62, 62, 68, 68, 74, 74, 80, 80, 86, 86, 92, 92, 98, 98, 104, 104, 110, 110, 116, 116, 122, 122, 128, 128, 134, 134, 140, 140, 146, 146, 152, 152, 158, 158, 164, 164, 170, 170, 176, 176, 182, 182
Offset: 1

Views

Author

Vincenzo Librandi, Nov 22 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select n+1 else 6*n-Self(n-1)-2: n in [1..70]]; // Vincenzo Librandi, Sep 17 2013
  • Mathematica
    Table[3 n + 3 (-1)^n/2 + 1/2, {n, 70}] (* Bruno Berselli, Sep 17 2013 *)
    CoefficientList[Series[(2 + 6 x - 2 x^2)/((1 + x) (1 - x)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 17 2013 *)

Formula

a(n) = 6*n - a(n-1) - 2, with n>1, a(1)=2.
From Vincenzo Librandi, Sep 17 2013: (Start)
a(n) = a(n-1) +a(n-2) -a(n-3).
G.f.: 2*x*(1 + 3*x - x^2)/((1+x)*(1-x)^2).
a(n) = 2*A168233(n) = A168301(n) + 1. (End)
E.g.f.: (1/2)*(3 - 4*exp(x) + (6*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 17 2016

Extensions

New definition by Bruno Berselli, Sep 17 2013
Previous Showing 31-40 of 53 results. Next