cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A125758 Numbers congruent to 4 or 7 (mod 9).

Original entry on oeis.org

4, 7, 13, 16, 22, 25, 31, 34, 40, 43, 49, 52, 58, 61, 67, 70, 76, 79, 85, 88, 94, 97, 103, 106, 112, 115, 121, 124, 130, 133, 139, 142, 148, 151, 157, 160, 166, 169, 175, 178, 184, 187, 193, 196, 202, 205, 211, 214, 220, 223, 229, 232, 238, 241, 247, 250, 256, 259, 265, 268
Offset: 1

Views

Author

N. J. A. Sloane and David Applegate, Feb 02 2007

Keywords

Comments

For a given integer m, write its binary representation in reverse order, as in A125626, A125754, etc.; let a 0 mean "halving" and a 1 mean "k -> 3k+1". Then m specifies an operation on real numbers given by k -> f_m(k). Suppose the equation f_m(k) = k has a positive integer solution for some m. Then we conjecture that the values of k are precisely the terms of this sequence.
25 is a term because we have 25 -> 76 -> 38 -> 19 -> 58 -> 29 -> 88 -> 44 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 25.
In other words, we conjecture that this sequence coincides with A125757 sorted and with duplicates removed.

Crossrefs

Programs

  • Mathematica
    Select[Range[300],MemberQ[{4,7},Mod[#,9]]&]  (* Harvey P. Dale, Mar 12 2011 *)

Formula

From R. J. Mathar, Apr 03 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 9.
a(n) + a(n+1) = A017185(n).
G.f.: x*(4+3*x+2*x^2)/((1+x)*(x-1)^2). (End)
E.g.f.: 2 + ((9*x - 5/2)*exp(x) - (3/2)*exp(-x))/2. - David Lovler, Aug 21 2022

A177072 a(n) = (9*n+2)*(9*n+7).

Original entry on oeis.org

14, 176, 500, 986, 1634, 2444, 3416, 4550, 5846, 7304, 8924, 10706, 12650, 14756, 17024, 19454, 22046, 24800, 27716, 30794, 34034, 37436, 41000, 44726, 48614, 52664, 56876, 61250, 65786, 70484, 75344, 80366, 85550, 90896, 96404, 102074, 107906, 113900, 120056
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 81*A002061(n+1) - 67. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

  • Magma
    I:=[14, 176, 500]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Apr 08 2013
    
  • Mathematica
    CoefficientList[Series[2(7 + 67 x + 7 x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 08 2013 *)
    Table[(9*n + 2)*(9*n + 7), {n, 0, 40}] (* Amiram Eldar, Feb 19 2023 *)
    LinearRecurrence[{3,-3,1},{14,176,500},50] (* Harvey P. Dale, Jun 10 2023 *)
  • PARI
    a(n)=(9*n+2)*(9*n+7) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with n > 0, a(0)=14.
From Vincenzo Librandi, Apr 08 2013: (Start)
G.f.: 2*(7+67*x+7*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017185(n)*A017245(n).
Sum_{n>=0} 1/a(n) = cot(2*Pi/9)*Pi/45.
Product_{n>=0} (1 - 1/a(n)) = cosec(2*Pi/9)*cos(sqrt(29)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = cosec(2*Pi/9)*cos(sqrt(21)*Pi/18). (End)
E.g.f.: exp(x)*(14 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A240223 Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.

Original entry on oeis.org

2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2014

Keywords

Comments

The companion array and triangle for the start numbers M(n, k) is given in A240222.
For the Collatz operations u (for 'up') and d (for 'down') see the comment on A240222, also for links, especially for the M. Trümper paper.

Examples

			The rectangular array N(n, k) begins
  n\k 0      1       2       3       4       5 ...
  1:  2      5       8      11      14      17
  2:  2     11      20      29      38      47
  3:  2     29      56      83     110     137
  4:  2     83     164     245     326     407
  5:  2    245     488     731     974    1217
  6:  2    731    1460    2189    2918    3647
  7:  2   2189    4376    6563    8750   10937
  8:  2   6563   13124   19685   26246   32807
  9:  2  19685   39368   59051   78734   98417
  10: 2  59051  118100  177149  236198  295247
  ...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
  m\n  1  2   3   4    5    6    7 ...
  0:   2
  1:   5  2
  2:   8 11   2
  3:  11 20  29   2
  4:  14 29  56  83    2
  5:  17 38  83 164  245    2
  6:  20 47 110 245  488  731    2
  ...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
		

Crossrefs

Cf. A238475, A238476, A239126, A239127, A240222, A016789 (first row of N), A017185 (second row of N).

Formula

The array: N(n, k) = 2 + 3^n*k for n >= 1 and k >= 0.
The triangle: TN(m, n) = N(n,m-n+1) = 2 + 3^n*(m-n+1) for m+1 >= n >= 1 and 0 for m+1 < n.

A373730 Reduced Collatz function R applied to the numbers 6n+1: a(n) = R(6n+1), where R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

1, 11, 5, 29, 19, 47, 7, 65, 37, 83, 23, 101, 55, 119, 1, 137, 73, 155, 41, 173, 91, 191, 25, 209, 109, 227, 59, 245, 127, 263, 17, 281, 145, 299, 77, 317, 163, 335, 43, 353, 181, 371, 95, 389, 199, 407, 13, 425, 217, 443, 113, 461, 235, 479, 61, 497, 253, 515
Offset: 0

Views

Author

Jonas Kaiser, Jun 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A373730[n_] := #/2^IntegerExponent[#, 2] & [9*n + 2];
    Array[A373730, 100, 0] (* Paolo Xausa, Aug 19 2024 *)
  • PARI
    a(n) = n=9*n+2; n>>valuation(n,2);

Formula

a(n) = A000265(A017185(n)).

A048502 a(n) = 2^(n-1)*(9*n-16)+9.

Original entry on oeis.org

1, 2, 13, 53, 169, 473, 1225, 3017, 7177, 16649, 37897, 85001, 188425, 413705, 901129, 1949705, 4194313, 8978441, 19136521, 40632329, 85983241, 181403657, 381681673, 801112073, 1677721609, 3506438153, 7314866185, 15233712137, 31675383817, 65766686729
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A048494.

Programs

Formula

a(n) = T(8, n), array T given by A048494.
a(n) = 2^(n-1)*(9n-16)+9 = A000079(n-1)*A017185(n-2)+9. - Wesley Ivan Hurt, Dec 04 2013
G.f.: (1-3*x+11*x^2) / ((1-x)*(1-2*x)^2). - Colin Barker, Aug 24 2016

Extensions

Formula and more terms from Ralf Stephan, Jan 15 2004

A274602 Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 5, 2, 3, 11, 9, 3, 4, 19, 20, 13, 4, 5, 29, 35, 29, 17, 5, 6, 41, 54, 51, 38, 21, 6, 7, 55, 77, 79, 67, 47, 25, 7, 8, 71, 104, 113, 104, 83, 56, 29, 8, 9, 89, 135, 153, 149, 129, 99, 65, 33, 9, 10, 109, 170, 199, 202, 185, 154, 115, 74, 37, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2016

Keywords

Comments

Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows:
0
1 1
2 5 2
3 9 11 3
4 13 20 19 4
5 17 29 35 29 5
As an infinite square array (matrix) with comments:
0 1 2 3 4 5 A001477
1 5 11 19 29 41 A028387
2 9 20 35 54 77 A014107
3 13 29 51 79 113 A144391
4 17 38 67 104 149 A182868
5 21 47 83 129 185

Examples

			0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ...
As an infinite triangular array:
0
1   1
2   5   2
3  11   9    3
4  19  20   13    4
5  29  35   29   17    5
As an infinite square array (matrix) with comments:
0   1   2    3    4    5                   A001477
1   5   9   13   17   21                   A016813
2  11  20   29   38   47                   A017185
3  19  35   51   67   83
4  29  54   79  104  129
5  41  77  113  149  185
		

Crossrefs

Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k).

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]];
  • Mathematica
    Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 02 2016 *)

A350521 a(n) = 18*n + 4.

Original entry on oeis.org

4, 22, 40, 58, 76, 94, 112, 130, 148, 166, 184, 202, 220, 238, 256, 274, 292, 310, 328, 346, 364, 382, 400, 418, 436, 454, 472, 490, 508, 526, 544, 562, 580, 598, 616, 634, 652, 670, 688, 706, 724, 742, 760, 778, 796, 814, 832, 850, 868, 886, 904, 922, 940, 958
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2022

Keywords

Comments

Second column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.

Crossrefs

Programs

  • GAP
    List([0..53], n-> 18*n+4)
    
  • Magma
    [18*n+4: n in [0..53]];
    
  • Maple
    seq(18*n+4, n=0..53);
  • Mathematica
    Table[18n+4, {n, 0, 53}]
  • Maxima
    makelist(18*n+4, n, 0, 53);
    
  • PARI
    a(n)=18*n+4
    
  • Python
    [18*n+4 for n in range(53)]

Formula

a(n) = A242215(n) - 1.
a(n) = A298035(n+1) + 1.
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(2+7*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(2 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A017185(n) = A006370(A016921(n)). (End)

A301621 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 2.

Original entry on oeis.org

11, 29, 47, 83, 101, 119, 137, 173, 191, 209, 227, 263, 281, 299, 317, 353, 371, 389, 407, 443, 461, 479, 497, 533, 551, 569, 587, 623, 641, 659, 677, 713, 731, 749, 767, 803, 821, 839, 857, 893, 911, 929, 947, 983, 1001, 1019, 1037, 1073, 1091, 1109
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers congruent to 11, 29, 47, or 83 mod 90 with additive sum sequence 11 { + 18 + 18 + 36 + 18} {repeat ...}. Includes all prime numbers greater than 5 with digital root 2.

Examples

			11+18=29; 29+18=47; 47+36=83; 83+18=101; 101+18=119.
		

Crossrefs

Intersection of A007775 and A017185.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=2); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Flatten[Table[90n - {79, 61, 43, 7}, {n, 30}]] (* Alonso del Arte, Mar 29 2018 *)
  • PARI
    Vec(x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    

Formula

n == {11, 29, 47, 83} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
Previous Showing 11-18 of 18 results.