cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A304507 a(n) = 5*(n+1)*(9*n+4).

Original entry on oeis.org

20, 130, 330, 620, 1000, 1470, 2030, 2680, 3420, 4250, 5170, 6180, 7280, 8470, 9750, 11120, 12580, 14130, 15770, 17500, 19320, 21230, 23230, 25320, 27500, 29770, 32130, 34580, 37120, 39750, 42470, 45280, 48180, 51170, 54250, 57420, 60680, 64030, 67470, 71000, 74620
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

The first Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.

Crossrefs

Programs

  • GAP
    List([0..50], n -> 5*(n+1)*(9*n+4)); # Muniru A Asiru, May 15 2018
  • Maple
    seq((5*(n+1))*(9*n+4), n = 0 .. 40);
  • Mathematica
    Array[5 (# + 1) (9 # + 4) &, 41, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {20, 130, 330}, 41] (* or *)
    CoefficientList[Series[10 (2 + 7 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = 5*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(10*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
    

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 10*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 10*A062708(n+1) for n >= 0. - Robert G. Wilson v, May 14 2018
a(n) = 5*A011862(9*n+7) = 5*A108579(6*n+7). - Bruno Berselli, May 15 2018
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 5*A017209(n)*A008587(n+1). (End)

A358509 Sum of decimal digits of (3^n - 1)/2 (A003462).

Original entry on oeis.org

0, 1, 4, 4, 4, 4, 13, 13, 13, 22, 22, 31, 22, 31, 31, 31, 22, 31, 31, 31, 31, 31, 49, 49, 40, 40, 49, 67, 58, 58, 58, 76, 58, 76, 85, 85, 85, 85, 94, 85, 85, 94, 103, 103, 85, 94, 103, 112, 103, 112, 130, 130, 94, 121, 112, 112, 121, 103, 103, 121, 112, 121, 121, 139, 121, 148, 121, 157, 157, 157, 157, 175, 157, 157
Offset: 0

Views

Author

Paul Curtz, Nov 20 2022

Keywords

Comments

a(n) == 4 (mod 9) for n >= 2. - Robert Israel, Nov 21 2022

Examples

			For n=5, (3^n - 1)/2 = 121 so that a(5) = 1+2+1 = 4.
		

Crossrefs

Cf. A004166 (of 3^n).

Programs

  • Maple
    seq(convert(convert((3^n-1)/2,base,10),`+`),n=0..100); # Robert Israel, Nov 21 2022
  • Mathematica
    a[n_] := Total[IntegerDigits[(3^n - 1)/2]]; Array[a, 100, 0] (* Amiram Eldar, Nov 20 2022 *)
  • PARI
    a(n) = sumdigits((3^n - 1)/2); \\ Michel Marcus, Nov 20 2022
    
  • Python
    def A358509(n): return sum(map(int,str((3**n-1)>>1))) # Chai Wah Wu, Nov 21 2022

Formula

a(n) = A007953(A003462(n)).

A360962 Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0

Views

Author

Paul Curtz, Feb 27 2023

Keywords

Comments

The main diagonal is A024394.
The antidiagonals sums are A000537.

Examples

			The rows are:
  0  1  5  12  22  35  51  70 ... = A000326
  0  4 17  39  70 110 159 217 ... = A022266
  0  7 29  66 118 185 267 364 ... = A022272
  0 10 41  93 166 260 375 511 ... = A022278
  0 13 53 120 214 335 483 658 ... = A022284
  ... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
  0
  0  1
  0  4  5
  0  7 17 12
  0 10 29 39  22
  0 13 41 66  70  35
  0 16 53 93 118 110 51
  ... .
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> k*(k*(3+6*n)-1)/2:
    seq(seq(T(d-k,k), k=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023

Formula

Take successively sequences n*(3*n-1)/2, n*(9*n-1)/2, n*(15*n-1)/2, n*(21*n-1)/2, ... listed in the EXAMPLE section.
From Stefano Spezia, Feb 21 2024: (Start)
G.f.: y*(1 + 2*y + x*(2 + y))/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + 3*y + 6*x*(1 + y))/2. (End)

A017211 a(n) = (9*n + 4)^3.

Original entry on oeis.org

64, 2197, 10648, 29791, 64000, 117649, 195112, 300763, 438976, 614125, 830584, 1092727, 1404928, 1771561, 2197000, 2685619, 3241792, 3869893, 4574296, 5359375, 6229504, 7189057, 8242408
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000578 (n^3), A017209 (9*n+4).

Programs

Formula

a(n) = A017209(n)^3 = A000578(A017209(n)). - Wesley Ivan Hurt, Jan 22 2014
G.f.: (64+1941*x+2244*x^2+125*x^3)/(x-1)^4. - R. J. Mathar, Jul 14 2016
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, May 26 2024

A017220 a(n) = (9*n + 4)^12.

Original entry on oeis.org

16777216, 23298085122481, 12855002631049216, 787662783788549761, 16777216000000000000, 191581231380566414401, 1449225352009601191936, 8182718904632857144561, 37133262473195501387776, 142241757136172119140625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008456 (n^12), A017209 (9*n+4).

Programs

A168401 a(n) = 4 + 9*floor(n/2).

Original entry on oeis.org

4, 13, 13, 22, 22, 31, 31, 40, 40, 49, 49, 58, 58, 67, 67, 76, 76, 85, 85, 94, 94, 103, 103, 112, 112, 121, 121, 130, 130, 139, 139, 148, 148, 157, 157, 166, 166, 175, 175, 184, 184, 193, 193, 202, 202, 211, 211, 220, 220, 229, 229, 238, 238, 247, 247, 256, 256
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Cf. A017209.

Programs

Formula

a(n) = 9*n - a(n-1) - 1, with n > 1, a(1)=4.
G.f.: x*(4 + 9*x - 4*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 18 2013
a(n) = a(n-1) + a(n-2) - a(n-3). - Vincenzo Librandi, Sep 18 2013
E.g.f.: (1/4)*(9 - 16*exp(x) + (7 + 18*x)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 21 2016

Extensions

New definition by Vincenzo Librandi Sep 18 2013

A301622 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 4.

Original entry on oeis.org

13, 31, 49, 67, 103, 121, 139, 157, 193, 211, 229, 247, 283, 301, 319, 337, 373, 391, 409, 427, 463, 481, 499, 517, 553, 571, 589, 607, 643, 661, 679, 697, 733, 751, 769, 787, 823, 841, 859, 877, 913, 931, 949, 967, 1003, 1021, 1039, 1057, 1093, 1111
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {13, 31, 49, 67} mod 90 with additive sum sequence 13{+18+18+18+36} {repeat ...}. Includes all prime numbers > 5 with digital root 4.

Crossrefs

Intersection of A007775 and A017209.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=4); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (13 + 18 x + 18 x^2 + 18 x^3 + 23 x^4)/((1 - x)^2*(1 + x) (1 + x^2)), {x, 0, 50}], x] (* Michael De Vlieger, Apr 21 2018 *)
    LinearRecurrence[{1,0,0,1,-1},{13,31,49,67,103},50] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    Vec(x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
    

Formula

Numbers == {13, 31, 49, 67} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

Extensions

Last term corrected by Colin Barker, Mar 25 2018

A350521 a(n) = 18*n + 4.

Original entry on oeis.org

4, 22, 40, 58, 76, 94, 112, 130, 148, 166, 184, 202, 220, 238, 256, 274, 292, 310, 328, 346, 364, 382, 400, 418, 436, 454, 472, 490, 508, 526, 544, 562, 580, 598, 616, 634, 652, 670, 688, 706, 724, 742, 760, 778, 796, 814, 832, 850, 868, 886, 904, 922, 940, 958
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2022

Keywords

Comments

Second column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.

Crossrefs

Programs

  • GAP
    List([0..53], n-> 18*n+4)
    
  • Magma
    [18*n+4: n in [0..53]];
    
  • Maple
    seq(18*n+4, n=0..53);
  • Mathematica
    Table[18n+4, {n, 0, 53}]
  • Maxima
    makelist(18*n+4, n, 0, 53);
    
  • PARI
    a(n)=18*n+4
    
  • Python
    [18*n+4 for n in range(53)]

Formula

a(n) = A242215(n) - 1.
a(n) = A298035(n+1) + 1.
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(2+7*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(2 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A017185(n) = A006370(A016921(n)). (End)

A358736 a(n) is the number of appearances of (9*n + 4) in A358509.

Original entry on oeis.org

4, 3, 4, 9, 2, 3, 4, 1, 2, 7, 4, 6, 5, 7, 3, 1, 3, 8, 4, 7, 4, 3, 3, 3, 2, 1, 4, 6, 7, 0, 2, 8, 7, 6, 7, 3, 3, 4, 2, 4, 6, 4, 8, 5, 2, 4, 7, 3, 5, 0, 4, 2, 4, 6, 3, 3, 4, 5, 1, 4, 9, 4, 4, 4, 2, 3, 3, 1, 7, 4, 8, 3, 2, 4, 5, 5, 5, 6, 1, 4, 7, 7, 5, 6, 2, 6, 5, 3, 5, 4, 4, 2
Offset: 0

Views

Author

Paul Curtz, Nov 30 2022

Keywords

Comments

Is this sequence well-defined? - Joerg Arndt, Dec 12 2022

Crossrefs

Extensions

More terms from Michel Marcus, Nov 30 2022
Previous Showing 21-29 of 29 results.