cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A017339 a(n) = (10*n + 5)^11.

Original entry on oeis.org

48828125, 8649755859375, 2384185791015625, 96549157373046875, 1532278301220703125, 13931233916552734375, 87507831740087890625, 422351360321044921875, 1673432436896142578125, 5688000922764599609375, 17103393581163134765625, 46523913960640966796875, 116415321826934814453125
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+5)^11: n in [0..10]]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    Table[(10*n + 5)^11, {n, 0, 15}] (* Amiram Eldar, Apr 18 2023 *)

Formula

G.f.: 48828125*(x+1)*(x^10 + 177134*x^9 + 46525293*x^8 + 1356555432*x^7 + 9480267666*x^6 + 19107752148*x^5 + 9480267666*x^4 + 1356555432*x^3 + 46525293*x^2 + 177134*x + 1)/(x-1)^12. - Colin Barker, Nov 14 2012
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^11.
a(n) = 5^11 * A016763(n).
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/100000000000.
Sum_{n>=0} (-1)^n/a(n) = 50521*Pi^11/725760000000000000. (End)

A017340 a(n) = (10*n + 5)^12.

Original entry on oeis.org

244140625, 129746337890625, 59604644775390625, 3379220508056640625, 68952523554931640625, 766217865410400390625, 5688009063105712890625, 31676352024078369140625, 142241757136172119140625, 540360087662636962890625, 1795856326022129150390625, 5350250105473711181640625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: -244140625*(x^12 + 531428*x^11 + 237231970*x^10 + 10708911188*x^9 + 121383780207*x^8 + 477020564424*x^7 + 743288515164*x^6 + 477020564424*x^5 + 121383780207*x^4 + 10708911188*x^3 + 237231970*x^2 + 531428*x + 1)/(x-1)^13. - Colin Barker, Nov 14 2012
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^12.
a(n) = 5^12 * A016764(n).
Sum_{n>=0} 1/a(n) = 691*Pi^12/155925000000000000. (End)

A032587 Lucky numbers ending with digit 5.

Original entry on oeis.org

15, 25, 75, 105, 115, 135, 195, 205, 235, 285, 385, 415, 475, 495, 535, 615, 645, 655, 685, 735, 745, 805, 855, 885, 895, 925, 975, 1095, 1105, 1155, 1245, 1275, 1285, 1365, 1395, 1435, 1455, 1485, 1495, 1545, 1575, 1585, 1645, 1675, 1705, 1765, 1915
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Comments

Also, lucky numbers (A000959) which are congruent to 0 mod 5. - R. J. Mathar, Apr 29 2008

Crossrefs

Intersection of A000959 and A017329.

A038860 Numbers ending with '5' that are the difference of two positive cubes.

Original entry on oeis.org

215, 335, 485, 665, 875, 1115, 1385, 1685, 2015, 2375, 2765, 3185, 3635, 4095, 4115, 4625, 4905, 5165, 5735, 5805, 6335, 6795, 6965, 7625, 7875, 8315, 9035, 9045, 9785, 10305, 10565, 11375, 11655, 12215, 13085, 13095, 13985, 14625, 14915, 15875
Offset: 1

Views

Author

Keywords

Comments

Contains (k+5(2j+1))^3-k^3 for any integers k,j>=0. - M. F. Hasler, May 31 2007

Crossrefs

Intersection of A017329 and A181123.

Programs

  • PARI
    A038860(Nmax=20000,a=[]) = { local(t, j5); forstep( j=1,Nmax^(1/3)/5,2, j5=5*j; for(k=1, sqrt((Nmax/j5-j5^2-3*j5)/3), if(NmaxM. F. Hasler, Jun 07 2007

Formula

A number is in this sequence iff it is of the form (k+10j-5)^3-k^3, where k,j are any positive integers, since (k+d)^3 - k^3 = d(3(k+d/2)^2+d^2/4) == 5 (mod 10) iff d is odd and d == 0 (mod 5) (cf. A038853) - M. F. Hasler, Jun 07 2007

Extensions

Corrected by M. F. Hasler, Jun 07 2007

A070330 Nontrivial numbers in which suffixing or inserting a 0 anywhere yields only composite numbers.

Original entry on oeis.org

1, 7, 23, 29, 31, 43, 47, 73, 77, 83, 91, 101, 103, 107, 127, 143, 157, 173, 199, 209, 221, 233, 241, 247, 251, 257, 259, 271, 307, 313, 317, 343, 353, 359, 373, 377, 391, 409, 431, 433, 437, 439, 443, 461, 467, 469, 487, 497, 527, 541, 563, 569, 583, 589, 601
Offset: 1

Views

Author

Amarnath Murthy, May 11 2002

Keywords

Comments

"Nontrivial" excludes multiples of 2, 3, or 5.

Crossrefs

Extensions

More terms from Sascha Kurz, Feb 01 2003
a(1)=1 inserted by Sean A. Irvine, Jun 08 2024

A172292 Triangle read by rows: T(n, k) = (2*n+1)*(2*k+1), n>=1, 1<=k<=n.

Original entry on oeis.org

9, 15, 25, 21, 35, 49, 27, 45, 63, 81, 33, 55, 77, 99, 121, 39, 65, 91, 117, 143, 169, 45, 75, 105, 135, 165, 195, 225, 51, 85, 119, 153, 187, 221, 255, 289, 57, 95, 133, 171, 209, 247, 285, 323, 361, 63, 105, 147, 189, 231, 273, 315, 357, 399, 441, 69, 115, 161
Offset: 1

Views

Author

Vincenzo Librandi, Nov 24 2010

Keywords

Comments

A number m belongs to this sequence if and only if it is odd and composite.
First column: A016945(n, n>=1), second column: A017329(n, n>=2), third column: A147587(n, n>=3). - Vincenzo Librandi, Nov 20 2012
The number of occurrences of m corresponds to the number of nontrivial factorizations of m, i.e., A072670(m-1). - Daniel Forgues, Apr 22 2014

Examples

			Triangle begins:
9;
15, 25;
21, 35,  49;
27, 45,  63,  81;
33, 55,  77,  99,  121;
39, 65,  91,  117, 143, 169;
45, 75,  105, 135, 165, 195, 225;
51, 85,  119, 153, 187, 221, 255, 289;
57, 95,  133, 171, 209, 247, 285, 323, 361;
63, 105, 147, 189, 231, 273, 315, 357, 399, 441; etc.
Number of occurrences:
  63 = 9*7 = 21*3 has two nontrivial factorizations, thus occurs twice.
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:= 4 n*k + 2n + 2k + 1; Table[t[n, k], {n,15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

Formula

T(n, k) = A144562(n,k)*2+3 read by rows. (Was old name.)
T(n, k) = 2*A083487(n, k)+1. - Daniel Forgues, Sep 20 2011

A187715 a(n) = 5*n - (9 + (-1)^n)/2.

Original entry on oeis.org

1, 5, 11, 15, 21, 25, 31, 35, 41, 45, 51, 55, 61, 65, 71, 75, 81, 85, 91, 95, 101, 105, 111, 115, 121, 125, 131, 135, 141, 145, 151, 155, 161, 165, 171, 175, 181, 185, 191, 195, 201, 205, 211, 215, 221, 225
Offset: 1

Views

Author

Vincenzo Librandi, Mar 13 2011

Keywords

Comments

Numbers congruent to {1,5} mod 10. - Bruno Berselli, Mar 31 2012

Crossrefs

Cf. A001622, A010711 (first differences), A017281, A017329.

Programs

  • GAP
    Filtered([1..250],n-> n mod 10 =1 or n mod 10 = 5); # Muniru A Asiru, Nov 25 2018
    
  • Magma
    [5*n -(9+(-1)^n)/2: n in [1..60]];
    
  • Maple
    [5*n-(9+(-1)^n)/2$n=1..50]; # Muniru A Asiru, Nov 25 2018
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n+1],a+4,a+6]}; Transpose[NestList[nxt,{1,1},50]][[2]] (* Harvey P. Dale, Feb 16 2013 *)
    Table[BitOr[5*n, 1], {n, 0, 50}] (* Jon Maiga, Nov 24 2018 *)
  • PARI
    vector(50, n, (10*n -9-(-1)^n)/2) \\ G. C. Greubel, Dec 04 2018
    
  • Python
    for n in range(1,60): print(int(5*n - (9 + (-1)**n)/2), end=', ') # Stefano Spezia, Nov 30 2018
    
  • Sage
    [(10*n -9-(-1)^n)/2 for n in (1..50)] # G. C. Greubel, Dec 04 2018

Formula

a(n) = a(n-1) + 4 if n is even, a(n) = a(n-1) + 6 if n is odd.
a(n) = 2*a(n-1) - a(n-2) - 2*(-1)^n.
From R. J. Mathar, Mar 15 2011: (Start)
G.f.: x*(1 + 4*x + 5*x^2)/( (1+x)*(1-x)^2 ).
Bisections: a(2*n+1) = A017281(n), a(2*n) = A017329(n-1). (End)
a(n) = 5*(n-1) bitwise-OR 1. - Jon Maiga, Nov 24 2018
E.g.f.: ((10*x-9)*exp(x) - exp(-x) + 10)/2. - G. C. Greubel, Dec 04 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(5+2*sqrt(5))*Pi/20 + 3*log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

Extensions

Definition rewritten by R. J. Mathar, Mar 15 2011

A290781 a(n) = 20*n + 15.

Original entry on oeis.org

15, 35, 55, 75, 95, 115, 135, 155, 175, 195, 215, 235, 255, 275, 295, 315, 335, 355, 375, 395, 415, 435, 455, 475, 495, 515, 535, 555, 575, 595, 615, 635, 655, 675, 695, 715, 735, 755, 775, 795, 815, 835, 855, 875, 895, 915, 935, 955, 975, 995, 1015, 1035
Offset: 0

Views

Author

Arkadiusz Wesolowski, Aug 10 2017

Keywords

Comments

Bisection of A017329.
None of the numbers in this sequence is a Fermat pseudoprime to base 2.

Crossrefs

Programs

  • Magma
    [n: n in [15..1035 by 20]];
  • Mathematica
    Range[15, 1035, 20]

Formula

G.f.: 5*(3 + x)/(1 - x)^2.
a(n) = A004767(A016885(n)) = A004767(A004767(n) + n). - Torlach Rush, Oct 10 2019
E.g.f.: 5*exp(x)*(3 + 4*x). - Stefano Spezia, Oct 12 2019
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 5*A004767(n) = A017329(2*n+1) = A008587(4*n+3).
a(n) = 2*a(n-1) - a(n-2). (End)

A063284 Dimension of the space of weight n cuspidal newforms for Gamma_1( 11 ).

Original entry on oeis.org

-1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 48, 55, 60, 65, 68, 75, 78, 85, 88, 95, 98, 105, 106, 115, 118, 125, 126, 135, 136, 145, 146, 155, 156, 165, 164, 175, 176, 185, 184, 195, 194, 205, 204, 215, 214, 225, 222, 235, 234, 245, 242, 255, 252
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Crossrefs

Cf. A017329 (bisection),

Formula

From Colin Barker, Feb 24 2016: (Start)
a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.
G.f.: -x^2*(1 -x -5*x^2 -10*x^3 -16*x^4 -19*x^5 -21*x^6 -19*x^7 -15*x^8 -10*x^9 -4*x^10 +x^11) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).
(End)

A122124 Numbers n such that 25 divides Sum[ Prime[k]^n, {k,1,n}].

Original entry on oeis.org

3, 5, 7, 11, 15, 19, 23, 25, 27, 31, 35, 39, 43, 45, 47, 51, 55, 59, 63, 65, 67, 71, 75, 79, 83, 85, 87, 91, 95, 99, 103, 105, 107, 111, 115, 119, 123, 125, 127, 131, 135, 139, 143, 145, 147, 151, 155, 159, 163, 165, 167, 171, 175, 179, 183, 185, 187, 191, 195, 199
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006, Sep 18 2006, Sep 21 2006

Keywords

Comments

a(n) up to a(7) = 23 coincides with A007665[n+1] = Tower of Hanoi with 5 pegs. It appears that a(n) includes all A007665[n] = {1, 3, 5, 7, 11, 15, 19, 23, 27, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, ...} except A007665[1] = 1.
Primes in this sequence include 5 and all primes of the form 4k+3, A002145[n]. Terms include all numbers of the form 10k+5 (with nonnegative k), A017329[n].

Examples

			There are 25 primes p < 100, p(n) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.
a(1) = because 25 divides Sum[p(n)^3,{n,1,25}] = 2^3 + 3^3 + ... + 89^3 + 97^3 = A098999[25] and does not divide Sum[p(n)^1,{n,1,25}] = A007504[25] and Sum[p(n)^2,{n,1,25}] = A024450[25].
The next a(2) = 5 because 25 divides Sum[p(n)^5,{n,1,25}] = A122103[25] and does not divide Sum[p(n)^4,{n,1,25}] = A122102[25].
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],IntegerQ[Sum[ Prime[k]^#1, {k,1,25}]/25]&]
  • PARI
    for(n=1,100,if(sum(k=1,25,prime(k)^n)%25==0,print1(n,",")));
    print;print("Alternative method not using primes:");
    for(n=1,100,m=(n-1)%6;print1((n-m)*3+(n-m+if(m>1,(m-1)*12-1,m*6-1))/3,",")) \\ K. Spage, Oct 23 2009
Previous Showing 51-60 of 63 results. Next