A017339
a(n) = (10*n + 5)^11.
Original entry on oeis.org
48828125, 8649755859375, 2384185791015625, 96549157373046875, 1532278301220703125, 13931233916552734375, 87507831740087890625, 422351360321044921875, 1673432436896142578125, 5688000922764599609375, 17103393581163134765625, 46523913960640966796875, 116415321826934814453125
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
A017340
a(n) = (10*n + 5)^12.
Original entry on oeis.org
244140625, 129746337890625, 59604644775390625, 3379220508056640625, 68952523554931640625, 766217865410400390625, 5688009063105712890625, 31676352024078369140625, 142241757136172119140625, 540360087662636962890625, 1795856326022129150390625, 5350250105473711181640625
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
A032587
Lucky numbers ending with digit 5.
Original entry on oeis.org
15, 25, 75, 105, 115, 135, 195, 205, 235, 285, 385, 415, 475, 495, 535, 615, 645, 655, 685, 735, 745, 805, 855, 885, 895, 925, 975, 1095, 1105, 1155, 1245, 1275, 1285, 1365, 1395, 1435, 1455, 1485, 1495, 1545, 1575, 1585, 1645, 1675, 1705, 1765, 1915
Offset: 1
A038860
Numbers ending with '5' that are the difference of two positive cubes.
Original entry on oeis.org
215, 335, 485, 665, 875, 1115, 1385, 1685, 2015, 2375, 2765, 3185, 3635, 4095, 4115, 4625, 4905, 5165, 5735, 5805, 6335, 6795, 6965, 7625, 7875, 8315, 9035, 9045, 9785, 10305, 10565, 11375, 11655, 12215, 13085, 13095, 13985, 14625, 14915, 15875
Offset: 1
-
A038860(Nmax=20000,a=[]) = { local(t, j5); forstep( j=1,Nmax^(1/3)/5,2, j5=5*j; for(k=1, sqrt((Nmax/j5-j5^2-3*j5)/3), if(NmaxM. F. Hasler, Jun 07 2007
A070330
Nontrivial numbers in which suffixing or inserting a 0 anywhere yields only composite numbers.
Original entry on oeis.org
1, 7, 23, 29, 31, 43, 47, 73, 77, 83, 91, 101, 103, 107, 127, 143, 157, 173, 199, 209, 221, 233, 241, 247, 251, 257, 259, 271, 307, 313, 317, 343, 353, 359, 373, 377, 391, 409, 431, 433, 437, 439, 443, 461, 467, 469, 487, 497, 527, 541, 563, 569, 583, 589, 601
Offset: 1
A172292
Triangle read by rows: T(n, k) = (2*n+1)*(2*k+1), n>=1, 1<=k<=n.
Original entry on oeis.org
9, 15, 25, 21, 35, 49, 27, 45, 63, 81, 33, 55, 77, 99, 121, 39, 65, 91, 117, 143, 169, 45, 75, 105, 135, 165, 195, 225, 51, 85, 119, 153, 187, 221, 255, 289, 57, 95, 133, 171, 209, 247, 285, 323, 361, 63, 105, 147, 189, 231, 273, 315, 357, 399, 441, 69, 115, 161
Offset: 1
Triangle begins:
9;
15, 25;
21, 35, 49;
27, 45, 63, 81;
33, 55, 77, 99, 121;
39, 65, 91, 117, 143, 169;
45, 75, 105, 135, 165, 195, 225;
51, 85, 119, 153, 187, 221, 255, 289;
57, 95, 133, 171, 209, 247, 285, 323, 361;
63, 105, 147, 189, 231, 273, 315, 357, 399, 441; etc.
Number of occurrences:
63 = 9*7 = 21*3 has two nontrivial factorizations, thus occurs twice.
-
[4*n*k + 2*n + 2*k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:= 4 n*k + 2n + 2k + 1; Table[t[n, k], {n,15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A187715
a(n) = 5*n - (9 + (-1)^n)/2.
Original entry on oeis.org
1, 5, 11, 15, 21, 25, 31, 35, 41, 45, 51, 55, 61, 65, 71, 75, 81, 85, 91, 95, 101, 105, 111, 115, 121, 125, 131, 135, 141, 145, 151, 155, 161, 165, 171, 175, 181, 185, 191, 195, 201, 205, 211, 215, 221, 225
Offset: 1
-
Filtered([1..250],n-> n mod 10 =1 or n mod 10 = 5); # Muniru A Asiru, Nov 25 2018
-
[5*n -(9+(-1)^n)/2: n in [1..60]];
-
[5*n-(9+(-1)^n)/2$n=1..50]; # Muniru A Asiru, Nov 25 2018
-
nxt[{n_,a_}]:={n+1,If[EvenQ[n+1],a+4,a+6]}; Transpose[NestList[nxt,{1,1},50]][[2]] (* Harvey P. Dale, Feb 16 2013 *)
Table[BitOr[5*n, 1], {n, 0, 50}] (* Jon Maiga, Nov 24 2018 *)
-
vector(50, n, (10*n -9-(-1)^n)/2) \\ G. C. Greubel, Dec 04 2018
-
for n in range(1,60): print(int(5*n - (9 + (-1)**n)/2), end=', ') # Stefano Spezia, Nov 30 2018
-
[(10*n -9-(-1)^n)/2 for n in (1..50)] # G. C. Greubel, Dec 04 2018
A290781
a(n) = 20*n + 15.
Original entry on oeis.org
15, 35, 55, 75, 95, 115, 135, 155, 175, 195, 215, 235, 255, 275, 295, 315, 335, 355, 375, 395, 415, 435, 455, 475, 495, 515, 535, 555, 575, 595, 615, 635, 655, 675, 695, 715, 735, 755, 775, 795, 815, 835, 855, 875, 895, 915, 935, 955, 975, 995, 1015, 1035
Offset: 0
A063284
Dimension of the space of weight n cuspidal newforms for Gamma_1( 11 ).
Original entry on oeis.org
-1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 48, 55, 60, 65, 68, 75, 78, 85, 88, 95, 98, 105, 106, 115, 118, 125, 126, 135, 136, 145, 146, 155, 156, 165, 164, 175, 176, 185, 184, 195, 194, 205, 204, 215, 214, 225, 222, 235, 234, 245, 242, 255, 252
Offset: 2
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_1(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 1, 0, 0, 0, -1).
A122124
Numbers n such that 25 divides Sum[ Prime[k]^n, {k,1,n}].
Original entry on oeis.org
3, 5, 7, 11, 15, 19, 23, 25, 27, 31, 35, 39, 43, 45, 47, 51, 55, 59, 63, 65, 67, 71, 75, 79, 83, 85, 87, 91, 95, 99, 103, 105, 107, 111, 115, 119, 123, 125, 127, 131, 135, 139, 143, 145, 147, 151, 155, 159, 163, 165, 167, 171, 175, 179, 183, 185, 187, 191, 195, 199
Offset: 1
There are 25 primes p < 100, p(n) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.
a(1) = because 25 divides Sum[p(n)^3,{n,1,25}] = 2^3 + 3^3 + ... + 89^3 + 97^3 = A098999[25] and does not divide Sum[p(n)^1,{n,1,25}] = A007504[25] and Sum[p(n)^2,{n,1,25}] = A024450[25].
The next a(2) = 5 because 25 divides Sum[p(n)^5,{n,1,25}] = A122103[25] and does not divide Sum[p(n)^4,{n,1,25}] = A122102[25].
-
Select[Range[300],IntegerQ[Sum[ Prime[k]^#1, {k,1,25}]/25]&]
-
for(n=1,100,if(sum(k=1,25,prime(k)^n)%25==0,print1(n,",")));
print;print("Alternative method not using primes:");
for(n=1,100,m=(n-1)%6;print1((n-m)*3+(n-m+if(m>1,(m-1)*12-1,m*6-1))/3,",")) \\ K. Spage, Oct 23 2009
Comments