cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A017668 Denominator of sum of -2nd powers of divisors of n.

Original entry on oeis.org

1, 4, 9, 16, 25, 18, 49, 64, 81, 10, 121, 24, 169, 98, 45, 256, 289, 324, 361, 200, 441, 242, 529, 288, 625, 338, 729, 56, 841, 9, 961, 1024, 1089, 578, 49, 432, 1369, 722, 1521, 160, 1681, 441, 1849, 968, 2025, 1058, 2209, 1152, 2401, 500, 2601, 1352, 2809
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
		

Crossrefs

Cf. A017667 (numerator).

Programs

  • Magma
    [Denominator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Denominator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Denominator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = denominator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
    
  • PARI
    vector(50, n, denominator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018

A017667 Numerator of sum of -2nd powers of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 25, 50, 85, 91, 13, 122, 35, 170, 125, 52, 341, 290, 455, 362, 273, 500, 305, 530, 425, 651, 425, 820, 75, 842, 13, 962, 1365, 1220, 725, 52, 637, 1370, 905, 1700, 221, 1682, 625, 1850, 1281, 2366, 1325, 2210, 1705, 2451, 651, 2900, 1785
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
C. Defant proves that there are no positive integers n such that sigma_{-2}(n) lies in (Pi^2/8, 5/4). See arxiv link. - Michel Marcus, Aug 24 2018

Examples

			1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
		

Crossrefs

Cf. A017668 (denominator), A002117, A013661, A111003 (Pi^2/8).

Programs

  • Magma
    [Numerator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Numerator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Numerator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = numerator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
    
  • PARI
    vector(50, n, numerator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Dirichlet g.f.: zeta(s)*zeta(s+2) [for fraction A017667/A017668]. - Franklin T. Adams-Watters, Sep 11 2005
sup_{n>=1} a(n)/A017668(n) = zeta(2) (A013661). - Amiram Eldar, Sep 25 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017668(k) = zeta(3) (A002117). - Amiram Eldar, Apr 02 2024

A013962 a(n) = sigma_14(n), the sum of the 14th powers of the divisors of n.

Original entry on oeis.org

1, 16385, 4782970, 268451841, 6103515626, 78368963450, 678223072850, 4398314962945, 22876797237931, 100006103532010, 379749833583242, 1283997101947770, 3937376385699290, 11112685048647250, 29192932133689220, 72061992352890881, 168377826559400930
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(14, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[14,Range[20]] (* Harvey P. Dale, Mar 10 2013 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^14*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 14); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,14) for n in range(1,16)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^14*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-14)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(14*e+14)-1)/(p^14-1).
Sum_{k=1..n} a(k) = zeta(15) * n^15 / 15 + O(n^16). (End)

A013966 a(n) = sigma_18(n), the sum of the 18th powers of the divisors of n.

Original entry on oeis.org

1, 262145, 387420490, 68719738881, 3814697265626, 101560344351050, 1628413597910450, 18014467229220865, 150094635684419611, 1000003814697527770, 5559917313492231482, 26623434909949071690, 112455406951957393130, 426880482624234915250, 1477891883850485076740
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^18*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(18*e+18)-1)/(p^18-1).
Dirichlet g.f.: zeta(s)*zeta(s-18).
Sum_{k=1..n} a(k) = zeta(19) * n^19 / 19. + O(n^20). (End)

A013971 a(n) = sigma_23(n), the sum of the 23rd powers of the divisors of n.

Original entry on oeis.org

1, 8388609, 94143178828, 70368752566273, 11920928955078126, 789730317205170252, 27368747340080916344, 590295880727458217985, 8862938119746644274757, 100000011920928963466734, 895430243255237372246532, 6624738056749922960468044, 41753905413413116367045798
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(23,n): n in [1..30]]; // G. C. Greubel, Nov 03 2018
  • Mathematica
    DivisorSigma[23,Range[15]] (* Harvey P. Dale, May 02 2016 *)
  • PARI
    vector(30, n, sigma(n,23)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    [sigma(n,23)for n in range(1,12)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^23*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(23*e+23)-1)/(p^23-1).
Dirichlet g.f.: zeta(s)*zeta(s-23).
Sum_{k=1..n} a(k) = zeta(24) * n^24 / 24 + O(n^25). (End)

A013964 a(n) = sigma_16(n), the sum of the 16th powers of the divisors of n.

Original entry on oeis.org

1, 65537, 43046722, 4295032833, 152587890626, 2821153019714, 33232930569602, 281479271743489, 1853020231898563, 10000152587956162, 45949729863572162, 184887084343023426, 665416609183179842, 2177986570740006274, 6568408508343827972, 18447025552981295105
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(16, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[16, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^16*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 16); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,16)for n in range(1,14)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^16*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-16)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(16*e+16)-1)/(p^16-1).
Sum_{k=1..n} a(k) = zeta(17) * n^17 / 17 + O(n^18). (End)

A013968 a(n) = sigma_20(n), the sum of the 20th powers of the divisors of n.

Original entry on oeis.org

1, 1048577, 3486784402, 1099512676353, 95367431640626, 3656161927895954, 79792266297612002, 1152922604119523329, 12157665462543713203, 100000095367432689202, 672749994932560009202, 3833763649708914645906, 19004963774880799438802, 83668335217551100221154
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(20,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
  • Mathematica
    DivisorSigma[20,Range[20]] (* Harvey P. Dale, Jul 26 2015 *)
  • PARI
    vector(50, n, sigma(n,20)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    [sigma(n,20)for n in range(1,13)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^20*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(20*e+20)-1)/(p^20-1).
Dirichlet g.f.: zeta(s)*zeta(s-20).
Sum_{k=1..n} a(k) = zeta(21) * n^21 / 21 + O(n^22). (End)

A013970 a(n) = sigma_22(n), the sum of the 22nd powers of the divisors of n.

Original entry on oeis.org

1, 4194305, 31381059610, 17592190238721, 2384185791015626, 131621735227521050, 3909821048582988050, 73786993887028445185, 984770902214992292491, 10000002384185795209930, 81402749386839761113322, 552061570551763831158810, 3211838877954855105157370
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^22*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(22*e+22)-1)/(p^22-1).
Dirichlet g.f.: zeta(s)*zeta(s-22).
Sum_{k=1..n} a(k) = zeta(23) * n^23 / 23 + O(n^24). (End)

A017669 Numerator of sum of -3rd powers of divisors of n.

Original entry on oeis.org

1, 9, 28, 73, 126, 7, 344, 585, 757, 567, 1332, 511, 2198, 387, 392, 4681, 4914, 757, 6860, 4599, 1376, 2997, 12168, 455, 15751, 9891, 20440, 3139, 24390, 147, 29792, 37449, 4144, 22113, 6192, 55261, 50654, 15435, 61544, 7371, 68922, 172, 79508, 24309, 10598
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 9/8, 28/27, 73/64, 126/125, 7/6, 344/343, 585/512, 757/729, 567/500, 1332/1331, 511/432, ...
		

Crossrefs

Cf. A017670 (denominator), A002117, A013662.

Programs

  • Magma
    [Numerator(DivisorSigma(3,n)/n^3): n in [1..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Numerator[DivisorSigma[-3, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Numerator[DivisorSigma[3, n]/n^3], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, numerator(sigma(n, 3)/n^3)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^3*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017670(n) = zeta(3) (A002117).
Dirichlet g.f. of a(n)/A017670(n): zeta(s)*zeta(s+3).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017670(k) = zeta(4) (A013662). (End)

A017670 Denominator of sum of -3rd powers of divisors of n.

Original entry on oeis.org

1, 8, 27, 64, 125, 6, 343, 512, 729, 500, 1331, 432, 2197, 343, 375, 4096, 4913, 648, 6859, 4000, 1323, 2662, 12167, 384, 15625, 8788, 19683, 2744, 24389, 125, 29791, 32768, 3993, 19652, 6125, 46656, 50653, 13718, 59319, 6400, 68921, 147, 79507, 21296, 10125
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 9/8, 28/27, 73/64, 126/125, 7/6, 344/343, 585/512, 757/729, 567/500, 1332/1331, 511/432, ...
		

Crossrefs

Cf. A017669.

Programs

  • Magma
    [Denominator(DivisorSigma(3,n)/n^3): n in [1..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Denominator[DivisorSigma[-3, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Denominator[DivisorSigma[3, n]/n^3], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, denominator(sigma(n, 3)/n^3)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Denominator of Sum_{d|n} 1/d^3.
Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^3*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
Previous Showing 21-30 of 72 results. Next