cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 165 results. Next

A209295 Antidiagonal sums of the gcd(.,.) array A109004.

Original entry on oeis.org

0, 2, 5, 8, 12, 14, 21, 20, 28, 30, 37, 32, 52, 38, 53, 60, 64, 50, 81, 56, 92, 86, 85, 68, 124, 90, 101, 108, 132, 86, 165, 92, 144, 138, 133, 152, 204, 110, 149, 164, 220, 122, 237, 128, 212, 234, 181, 140, 288, 182, 245, 216, 252, 158, 297, 244
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2013

Keywords

Crossrefs

Programs

  • Magma
    A209295:= func< n | n eq 0 select 0 else (&+[(n/d+1)*EulerPhi(d): d in Divisors(n)]) >;
    [A209295(n): n in [0..40]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    a:= n-> add(igcd(j, n-j), j=0..n):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 25 2019
    # Alternative (computes [a(n), n=0..10000] about 25 times faster):
    a := n -> add(numtheory:-phi(d)*(n/d + 1), d = numtheory:-divisors(n)):
    seq(a(n), n = 0..57); # Peter Luschny, Aug 25 2019
  • Mathematica
    Table[Sum[GCD[n-k,k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Jan 04 2018 *)
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := n + Times @@ f @@@ FactorInteger[n]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = n + sum(k=1, n, gcd(n,k)); \\ Michel Marcus, Jan 05 2018
    
  • SageMath
    def A209295(n): return sum((n/k+1)*euler_phi(k) for k in (1..n) if (k).divides(n))
    [A209295(n) for n in range(41)] # G. C. Greubel, Jun 24 2024

Formula

a(0) = 0; a(n) = A018804(n) + n for n > 0. [Amended by Georg Fischer, Jan 25 2020]
a(n) = Sum_{d|n} phi(d)*(n/d + 1) for n >= 1. - Peter Luschny, Aug 25 2019

A299119 Positive solution to 2^(n-1) = (1/n) * Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 2, 6, 14, 40, 84, 224, 484, 1134, 2480, 5632, 12036, 26624, 56896, 122640, 261078, 557056, 1176876, 2490368, 5237360, 11008704, 23057408, 48234496, 100635144, 209714400, 436154368, 905962860, 1878931264, 3892314112, 8052800160, 16642998272, 34359209436
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Comments

For prime p, a(p) = 2^(p-2)*p. - Jon E. Schoenfield, Feb 03 2018

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1, n*2^(n-2)-
           add(a(d)*a(n/d), d=divisors(n) minus {1, n})/2)
        end:
    seq(a(n), n=1..35);  # Alois P. Heinz, Mar 07 2018
  • Mathematica
    nn=50;
    sys=Table[2^(n-1)*n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]

A309322 Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^3, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 4, 8, 15, 19, 35, 34, 56, 63, 86, 76, 141, 103, 157, 182, 212, 169, 294, 208, 355, 335, 359, 298, 556, 405, 490, 522, 657, 463, 865, 526, 816, 773, 812, 856, 1239, 739, 1003, 1058, 1424, 901, 1610, 988, 1525, 1617, 1445, 1174, 2188, 1435, 1960, 1760, 2091, 1483, 2529, 1994
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2019

Keywords

Comments

Dirichlet convolution of Euler totient function with triangular numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[EulerPhi[n/d] d (d + 1)/2, {d, Divisors[n]}], {n, 1, 55}]
    Table[Sum[Sum[GCD[j, k, n], {j, 1, k}], {k, 1, n}], {n, 1, 55}]

Formula

a(n) = Sum_{d|n} phi(n/d) * d * (d + 1)/2.
a(n) = Sum_{k=1..n} Sum_{j=1..k} gcd(j,k,n).
a(n) = Sum_{k=1..n} gcd(n,k)*(gcd(n,k)+1)/2. - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (36*zeta(3)). - Vaclav Kotesovec, May 23 2021
a(n) = (A018804(n) + A069097(n))/2. - Ridouane Oudra, May 22 2025

A309323 Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^4, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 5, 12, 26, 39, 76, 90, 152, 191, 275, 296, 492, 467, 674, 798, 1000, 985, 1467, 1348, 1934, 2011, 2360, 2322, 3420, 3085, 3791, 4062, 4944, 4523, 6454, 5486, 7168, 7237, 8189, 8340, 10942, 9175, 11300, 11714, 14208, 12381, 16759, 14232, 18036, 18549, 19706, 18470
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2019

Keywords

Comments

Dirichlet convolution of Euler totient function with tetrahedral numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[EulerPhi[n/d] d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 1, 47}]
    Table[Sum[Sum[Sum[GCD[i, j, k, n], {i, 1, j}], {j, 1, k}], {k, 1, n}], {n, 1, 47}]

Formula

a(n) = Sum_{d|n} phi(n/d) * d * (d + 1) * (d + 2)/6.
a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} gcd(i,j,k,n).
Sum_{k=1..n} a(k) ~ 15 * zeta(3) * n^4 / (4*Pi^4). - Vaclav Kotesovec, May 23 2021

A081000 n is a member if and only if it ranks among top n positive integers in centrality (cf. A080997 for fuller description of this concept).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120
Offset: 1

Views

Author

Matthew Vandermast, Mar 02 2003

Keywords

Comments

1, 2, 3, 4, 21 and 27 are currently the only known examples of n that rank exactly n-th in centrality; it is not known whether there are others.

Crossrefs

Cf. A080997, A080998, also A081029, the highly central integers (a subset of this sequence). Complement is A081001.

Formula

The formula for the centrality of an integer is A018804(n)/n^2; see also A080997.

A127172 Cube of A051731.

Original entry on oeis.org

1, 3, 1, 3, 0, 1, 6, 3, 0, 1, 3, 0, 0, 0, 1, 9, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 10, 6, 0, 3, 0, 0, 0, 1, 6, 0, 3, 0, 0, 0, 0, 0, 1, 9, 3, 0, 0, 0, 3, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Nonzero terms in every column = A007425: (1, 3, 3, 6, 3, 9, 3, ...).
Row sums = A007426: (1, 4, 4, 20, 4, 16, ...).
A127172 * mu(n) = d(n); or A127172 * A008683 = A000005.
A127172 * d(n) = tau_5(n); or A127172 * A000005 = A061200.
A127172 * phi(n) = A007429: (1, 4, 5, 11, 7, 20, ...); or: A127172 * A000010 = A007429.
Note that A051731 * d(n) = row sums of A127172; or A051731 * A000005 = A007425.
Also, A126988 * mu(n) = phi(n); or A126988 * A008683 = A000010.
A126988 * phi(n) = A018804: (1, 3, 5, 8, 9, 15, ...); = A127170 * mu(n).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 0, 1;
   6, 3, 0, 1;
   3, 0, 0, 0, 1;
   9, 3, 3, 0, 0, 1;
   3, 0, 0, 0, 0, 0, 1;
  10, 6, 0, 3, 0, 0, 0, 1;
   6, 0, 3, 0, 0, 0, 0, 0, 1;
   9, 3, 0, 0, 3, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Cube of A051731 A007425: (1, 3, 3, 6, 3, 9, 3, ...) in every column k, interspersed with (k-1) zeros.

A127478 Triangle T(n,k) read by rows: matrix product A054523 * A054522.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 4, 2, 0, 2, 5, 0, 0, 0, 4, 6, 3, 4, 0, 0, 2, 7, 0, 0, 0, 0, 0, 6, 8, 4, 0, 4, 0, 0, 0, 4, 9, 0, 6, 0, 0, 0, 0, 0, 6, 10, 5, 0, 0, 8, 0, 0, 0, 0, 4, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 6, 8, 6, 0, 4, 0, 0, 0, 0, 0, 4, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 14, 7, 0, 0, 0, 0, 12, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

If the two matrices A054523 and A054522 are commuted, the matrix product becomes A127477.

Examples

			First few rows of the triangle are:
.1;
.2, 1;
.3, 0, 2;
.4, 2, 0, 2;
.5, 0, 0, 0, 4;
.6, 3, 4, 0, 0, 2;
.7, 0, 0, 0, 0, 0, 6;
.8, 4, 0, 4, 0, 0, 0, 4;
....
		

Crossrefs

Programs

  • Maple
    A054522 := proc(n,k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:
    A054523 := proc(n,k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:
    A127478 := proc(n,k) add( A054523(n,j)*A054522(j,k), j=k..n) ; end: seq(seq( A127478(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = sum_{j=k..n} A054523(n,j) * A054522(j,k).
T(n,n) = A000010(n) (diagonal).
sum_{k=1..n} T(n,k) = A018804(n) (row sums).

Extensions

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

A294402 E.g.f.: exp(-Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, -1, -3, -1, 1, 279, 301, 12263, 5601, -431281, -2140739, -77720721, -1755429983, -12569445721, 85768062381, -4458503862121, 43351731658561, 546719071653663, 31735514726673661, 291860504886837599, 5860390638855992001, 208620917963122666679
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294403 (k=1), A294404 (k=2).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j). - Ilya Gutkovskiy, Aug 17 2021

A294459 E.g.f.: exp(-Sum_{n>=1} A001227(n) * x^n).

Original entry on oeis.org

1, -1, -1, -7, 25, -41, 631, 881, 98897, -609265, 3798991, -41799671, 914146729, -15008576857, 16469525255, -5181463756351, 79515495724321, -1220435382764129, 12608713897126687, -449855614172366695, 10437031873016276921, -231918657853281955081
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} (Sum_{d|n and d is odd} d^k) * x^n): this sequence (k=0), A294460 (k=1), A294461 (k=2).
Cf. A018804.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, d%2)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A001227(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} 1 / (1 + x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j). - Ilya Gutkovskiy, Aug 17 2021

A332794 a(n) = Sum_{d|n} (-1)^(d + 1) * d * phi(n/d).

Original entry on oeis.org

1, -1, 5, -4, 9, -5, 13, -12, 21, -9, 21, -20, 25, -13, 45, -32, 33, -21, 37, -36, 65, -21, 45, -60, 65, -25, 81, -52, 57, -45, 61, -80, 105, -33, 117, -84, 73, -37, 125, -108, 81, -65, 85, -84, 189, -45, 93, -160, 133, -65, 165, -100, 105, -81, 189
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(d + 1) d EulerPhi[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := If[OddQ[n], Sum[GCD[n, k], {k, 1, n}], Sum[(-1)^(k + 1) GCD[n, k], {k, 1, n}]]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := (e*(p-1) + p)*p^(e-1); f[2, e_] := -e*2^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*eulerphi(n/d)); \\ Michel Marcus, Feb 24 2020

Formula

G.f.: Sum_{k>=1} phi(k) * x^k / (1 + x^k)^2.
Dirichlet g.f.: zeta(s-1)^2 * (1 - 2^(2 - s)) / zeta(s).
a(n) = Sum_{k=1..n} gcd(n, k) if n odd, Sum_{k=1..n} (-1)^(k + 1) * gcd(n, k) if n even.
From Amiram Eldar, Nov 04 2022: (Start)
Multiplicative with a(2^e) = -e*2^(e-1), and a(p^e) = (e*(p-1) + p)*p^(e-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*log(2)/Pi^2 = 0.210691... . (End)
a(2*n) = - Sum_{k = 1..n} gcd(2*k, n) = - A344372(n); a(2*n+1) = A018804(2*n+1). - Peter Bala, Jan 11 2024
a(n) = Sum_{k = 1..n} (-1)^(1 + gcd(k, n)) * gcd(k, n) (follows from an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024
Previous Showing 81-90 of 165 results. Next