A342841
Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 10^n.
Original entry on oeis.org
1, 841, 832693, 832046137, 831916552903, 831908477106883, 831907430687799769, 831907383078281024371, 831907373418800027750413, 831907372722449100147414487, 831907372589073124899487831735, 831907372581823023465031521920149, 831907372580768386561159867257319711
Offset: 0
For visualization, the set(x, y, z) is inscribed in a cube matrix.
"o" stands for a gcd = 1.
"." stands for a gcd > 1.
.
For n=1, the size of the cube matrix is 10 X 10 X 10:
.
/ : : : : : : : : : :
/ 100 Sum (z = 1)
z = 7 |/1 2 3 4 5 6 7 8 9 10 |
--+--------------------- 75 Sum (z = 2)
1 /| o o o o o o o o o o 10 |
2/ | o o o o o o o o o o 10 91 Sum (z = 3)
/ 10 |
z = 8 |/1 2 3 4 5 6 7 8 9 10 10 75 Sum (z = 4)
--+--------------------- 10 /
1 /| o o o o o o o o o o 10 10 96 Sum (z = 5)
2/ | o . o . o . o . o . 5 9 /
/ 10 10 67 Sum (z = 6)
z = 9 |/1 2 3 4 5 6 7 8 9 10 5 10 /
--+--------------------- 10 10 /
1 /| o o o o o o o o o o 10 5 --/
2/ | o o o o o o o o o o 10 10 99 Sum (z = 7)
/ 7 5 /
z = 10 |/1 2 3 4 5 6 7 8 9 10 10 10 /
--+--------------------- 10 5 /
1 | o o o o o o o o o o 10 7 --/
2 | o . o . o . o . o . 5 10 75 Sum (z = 8)
3 | o o o o o o o o o o 10 10 /
4 | o . o . o . o . o . 5 7 /
5 | o o o o . o o o o . 8 10 /
6 | o . o . o . o . o . 5 --/
7 | o o o o o o o o o o 10 91 Sum (z = 9)
8 | o . o . o . o . o . 5 /
9 | o o o o o o o o o o 10 /
10 | o . o . . . o . o . 4 /
--/
72 Sum (z = 10)
/
|
------
841 Cube Sum (z = 1..10)
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
Related counts of k-tuples:
-
import math
for n in range (0, 10):
counter = 0
for x in range (1, pow(10, n)+1):
for y in range(1, pow(10, n)+1):
for z in range(1, pow(10, n)+1):
if math.gcd(math.gcd(y, x),z) == 1:
counter += 1
print(n, counter)
A342935
Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n.
Original entry on oeis.org
1, 7, 55, 439, 3433, 27541, 218773, 1749223, 13964245, 111725197, 893433661, 7147232467, 57169672861, 457364647435, 3658819119307, 29270432746633, 234161501271463, 1873293863661469, 14986321908515773, 119890565631185995, 959124025074311215, 7672992332048493361
Offset: 0
For n=3, the size of the division cube matrix is 8 X 8 X 8:
.
: : : : : : : : :
.
z = 4 | 1 2 3 4 5 6 7 8
------+----------------------
1 /| o o o o o o o o 8
2 / | o . o . o . o . 4 64 Sum (z = 1)
3/ | o o o o o o o o 8 /
/ o . 4 48 Sum (z = 2)
z = 5 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 4 60 Sum (z = 3)
1 /| o o o o o o o o 8 8 /
2 / | o o o o o o o o 8 4 /
3/ | o o o o o o o o 8 --/
/ o o 8 48 Sum (z = 4)
z = 6 |/1 2 3 4 5 6 7 8 o 7 /
------+---------------------- 8 /
1 /| o o o o o o o o 8 8 /
2 / | o . o . o . o . 4 8 /
3/ | o o o o o o o o 6 --/
/ o . 4 63 Sum (z = 5)
z = 7 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 3 /
1 /| o o o o o o o o 8 8 /
2 / | o o o o o o o o 8 4 /
3/ | o o o o o o o o 8 --/
/ o o 8 45 Sum (z = 6)
z = 8 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 8 /
1 | o o o o o o o o 8 7 /
2 | o . o . o . o . 4 8 /
3 | o o o o o o o o 8 --/
4 | o . o . o . o . 4 63 Sum (z = 7)
5 | o o o o o o o o 8 /
6 | o . o . o . o . 4 /
7 | o o o o o o o o 8 /
8 | o . o . o . o . 4 /
--/
48 Sum (z = 8)
|
---
439 Cube Sum (z = 1..8)
-
Array[Sum[MoebiusMu[k]*Floor[(2^#)/k]^3, {k, 2^# + 1}] &, 22, 0] (* Michael De Vlieger, Apr 05 2021 *)
-
from labmath import mobius
def A342935(n): return sum(mobius(k)*(2**n//k)**3 for k in range(1, 2**n+1))
Original entry on oeis.org
1, 2, 3, 5, 6, 9, 11, 14, 16, 21, 23, 29, 32, 36, 40, 48, 51, 60, 64, 70, 75, 86, 90, 100, 106, 115, 121, 135, 139, 154, 162, 172, 180, 192, 198, 216, 225, 237, 245, 265, 271, 292, 302, 314, 325, 348, 356, 377, 387, 403, 415, 441, 450, 470, 482
Offset: 2
-
List([2..60],n->Sum([1..n],k->Phi(k)/2)); # Muniru A Asiru, Mar 05 2018
-
a:=n->sum(numtheory[phi](k),k=1..n): seq(a(n)/2, n=2..60); # Muniru A Asiru, Mar 05 2018
-
Rest@ Accumulate[EulerPhi@ Range@ 56]/2 (* Michael De Vlieger, Apr 02 2017 *)
-
a(n) = sum(k=1, n, eulerphi(k))/2; \\ Michel Marcus, Apr 01 2017
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A046657(n): # based on second formula in A018805
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(4*A046657(k1)-1)
j, k1 = j2, n//j2
return (n*(n-1)-c+j)//4 # Chai Wah Wu, Mar 25 2021
A100613
Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y) > 1}.
Original entry on oeis.org
0, 1, 2, 5, 6, 13, 14, 21, 26, 37, 38, 53, 54, 69, 82, 97, 98, 121, 122, 145, 162, 185, 186, 217, 226, 253, 270, 301, 302, 345, 346, 377, 402, 437, 458, 505, 506, 545, 574, 621, 622, 681, 682, 729, 770, 817, 818, 881, 894, 953, 990, 1045, 1046, 1117, 1146, 1209
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 02 2004
-
a100613 n = length [()| x <- [1..n], y <- [1..n], gcd x y > 1]
-- Reinhard Zumkeller, Jan 21 2013
-
f[n_] := Table[ #^2 &[m], {m, 1, n + 1}] - FoldList[Plus, 1, 2 Array[EulerPhi, n, 2]] (* Gregg K. Whisler, Jun 25 2008 *)
-
a(n) = sum(i=1, n, sum(j=1, n, gcd(i,j)>1)); \\ Michel Marcus, Jan 30 2017
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A100613(n): # based on second formula in A018805
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(k1**2-A100613(k1))
j, k1 = j2, n//j2
return n+c-j # Chai Wah Wu, Mar 24 2021
A213212
Number of distinct products i*j*k over all triples (i,j,k) with i,j,k >= 0 and i+j+k <= n and gcd(i,j,k) <= 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 10, 12, 17, 20, 26, 29, 38, 44, 52, 59, 72, 78, 94, 104, 118, 130, 149, 160, 182, 198, 221, 237, 263, 278, 308, 330, 361, 383, 416, 438, 480, 509, 546, 574, 620, 646, 699, 734, 777, 816, 872, 907, 969, 1012, 1071, 1117, 1190, 1233, 1307, 1361
Offset: 0
-
h:= proc() true end:
b:= proc(n) local c, i, j, p;
c:=0;
for i to iquo(n, 3) do
for j from i to iquo(n-i, 2) do
if igcd(i, j, n-i-j)=1 then p:= i*j*(n-i-j);
if h(p) then h(p):= false; c:=c+1 fi
fi
od
od; c
end:
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +b(n)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 02 2013
-
f[n_] := Length[ Union[ Flatten[ Table[ If[ i+j+k <= n&& GCD[i, j, k] <= 1, i*j*k, 0], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]]]; Table[ f[n], {n, 0, 200}]
A213213
Number of distinct products i*j*k over all triples (i,j,k) with i,j,k>=0 and i+j+k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 22, 28, 33, 40, 46, 56, 64, 75, 84, 97, 109, 125, 137, 156, 170, 192, 210, 232, 251, 276, 296, 322, 347, 376, 400, 435, 463, 498, 529, 567, 600, 641, 674, 720, 758, 808, 849, 901, 942, 1001, 1051, 1110, 1157, 1225, 1275
Offset: 0
-
h:= proc() true end:
b:= proc(n) local c, i, j, p;
c:=0;
for i to iquo(n, 3) do
for j from i to iquo(n-i, 2) do p:= i*j*(n-i-j);
if h(p) then h(p):= false; c:=c+1 fi
od
od; c
end:
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +b(n)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 02 2013
-
f[n_] := Length[ Union[ Flatten[ Table[ If[ i+j+k <= n, i*j*k, 0], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]]]; Table[ f[n], {n, 0, 200}]
A333295
Triangle read by rows: T(m,n) = Sum_{1 <= i <= m, 1 <= j <= n, gcd{i,j}=1} 1, where m >= n >= 1.
Original entry on oeis.org
1, 2, 3, 3, 5, 7, 4, 6, 9, 11, 5, 8, 12, 15, 19, 6, 9, 13, 16, 21, 23, 7, 11, 16, 20, 26, 29, 35, 8, 12, 18, 22, 29, 32, 39, 43, 9, 14, 20, 25, 33, 36, 44, 49, 55, 10, 15, 22, 27, 35, 38, 47, 52, 59, 63, 11, 17, 25, 31, 40, 44, 54, 60, 68, 73, 83, 12, 18, 26, 32, 42, 46, 57, 63, 71, 76, 87, 91
Offset: 1
Triangle begins:
1,
2, 3,
3, 5, 7,
4, 6, 9, 11,
5, 8, 12, 15, 19,
6, 9, 13, 16, 21, 23,
7, 11, 16, 20, 26, 29, 35,
8, 12, 18, 22, 29, 32, 39, 43,
9, 14, 20, 25, 33, 36, 44, 49, 55,
10, 15, 22, 27, 35, 38, 47, 52, 59, 63,
11, 17, 25, 31, 40, 44, 54, 60, 68, 73, 83,
12, 18, 26, 32, 42, 46, 57, 63, 71, 76, 87, 91,
...
-
V0 := proc(m,n) local a,i,j; a:=0;
for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
for m from 1 to 14 do lprint([seq(V0(m,n),n=1..m)]); od:
A343193
Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n.
Original entry on oeis.org
1, 9279, 92434863, 923988964495, 9239427676877311, 92393887177379735327, 923938441006918271400831, 9239384074081430755652624559, 92393840333765561759423951663423, 923938402972369921481535120722882015
Offset: 0
(1,2,2,3) is counted, but (2,4,4,6) is not, because gcd = 2.
For n=1, the size of the division tesseract matrix is 10 X 10 X 10 X 10:
.
o------------x(w=10)------------o
/|. ./ |
/ |. ./ |
/ |. ./ |
/ |. ./ |
/ |. z(w=10) |
/ |. . / |
/ |. . / |
/ |. . / y(w=10)
o------------------------------.o |
|\ /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. | |
| w / | /.| | |
| \ z(w=1)| /. | | |
| \ / |y(w=1) /. | | |
| \/-------------------/. | | |
| | | | | | w | sums
| | Cube at w = 1 | | | | ----+-----
| | 10 X 10 X 10 | _ _| |---------o 1 | 1000
| | contains | / | / 2 | 875
| | 1000 | / | / 3 | 973
| | completely | / | / 4 | 875
| | reduced fractions | / | / 5 | 992
| | |/ | / 6 | 849
| /------------------- \ | / 7 | 999
| / \ | / 8 | 875
| w w | / 9 | 973
| / \ | / 10 | 868
| / \ |/ ----+-----
o -------------------------------o sum for a(1) | 9279
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
Related counts of k-tuples:
A343527
Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 2^n.
Original entry on oeis.org
1, 15, 239, 3823, 60735, 972191, 15517679, 248252879, 3969108895, 63506982943, 1015951568815, 16255093526239, 260068569617727, 4161109496115135, 66577084386669199, 1065232436999055375, 17043668344393625999, 272698739815301095247, 4363176901343767529551, 69810828455823683068415, 1116973047989955380768527
Offset: 0
.
For n=3, the size of the gris is 8 X 8 X 8 X 8:
.
o------------x(w=8)-------------o
/|. ./ |
/ |. ./ |
/ |. ./ |
/ |. ./ |
/ |. z(w=8) |
/ |. . / |
/ |. . / |
/ |. . / y(w=8)
o------------------------------.o |
|\ /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. | |
| w / | /.| | |
| \ z(w=1)| /. | | |
| \ / |y(w=1) /. | | |
| \/-------------------/. | | |
| | | | | | w | sums
| | Cube at w = 1 | | | | ----+-----
| | 8 X 8 X 8 | _ _| |---------o 1 | 512
| | contains | / | / 2 | 448
| | 512 | / | / 3 | 504
| | completely | / | / 4 | 448
| | reduced fractions | / | / 5 | 511
| | |/ | / 6 | 441
| /------------------- \ | / 7 | 511
| / \ | / 8 | 448
| w w | / ----+-----
| / \ | / sum for a(3) | 3823
| / \ |/
o -------------------------------o
A344527
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of ordered k-tuples (x_1, x_2, ..., x_k) with gcd(x_1, x_2, ..., x_k) = 1 (1 <= {x_1, x_2, ..., x_k} <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 11, 1, 1, 31, 79, 55, 19, 1, 1, 63, 241, 239, 115, 23, 1, 1, 127, 727, 991, 607, 181, 35, 1, 1, 255, 2185, 4031, 3091, 1199, 307, 43, 1, 1, 511, 6559, 16255, 15559, 7501, 2303, 439, 55, 1, 1, 1023, 19681, 65279, 77995, 45863, 16531, 3823, 637, 63, 1
Offset: 1
G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} mu(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 7, 15, 31, 63, ...
1, 7, 25, 79, 241, 727, ...
1, 11, 55, 239, 991, 4031, ...
1, 19, 115, 607, 3091, 15559, ...
1, 23, 181, 1199, 7501, 45863, ...
-
T[n_, k_] := Sum[MoebiusMu[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
-
T(n, k) = sum(j=1, n, moebius(j)*(n\j)^k);
-
T(n, k) = n^k-sum(j=2, n, T(n\j, k));
-
from functools import lru_cache
from itertools import count, islice
@lru_cache(maxsize=None)
def A344527_T(n,k):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A344527_T(k1,k)
j, k1 = j2, n//j2
return n*(n**(k-1)-1)-c+j
def A344527_gen(): # generator of terms
return (A344527_T(k+1, n-k) for n in count(1) for k in range(n))
A344527_list = list(islice(A344527_gen(),30)) # Chai Wah Wu, Nov 02 2023
Comments