cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A017233 a(n) = 9*n + 6.

Original entry on oeis.org

6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0

Views

Author

David J. Horn and Laura Krebs Gordon (lkg615(AT)verizon.net), 1985

Keywords

Comments

General form: (q*n-1)*q, cf. A017233 (q=3), A098502 (q=4). - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
Numbers whose digital root is 6; that is, A010888(a(n)) = 6. (Ball essentially says that Iamblichus (circa 350) announced that a number equal to the sum of three integers 3*n, 3*n - 1, and 3*n - 2 has 6 as what is now called the number's digital root.) - Rick L. Shepherd, Apr 01 2014

References

  • W. W. R. Ball, A Short Account of the History of Mathematics, Sterling Publishing Company, Inc., 2001 (Facsimile Edition) [orig. pub. 1912], pages 110-111.

Crossrefs

Programs

Formula

G.f.: 3*(2+x)/(x-1)^2. - R. J. Mathar, Mar 20 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/27 - log(2)/9. - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(2 + 3*x). - Stefano Spezia, Dec 07 2024
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 3*A016789(n) = A019557(n+1)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A082040 a(n) = 9*n^2 + 3*n + 1.

Original entry on oeis.org

1, 13, 43, 91, 157, 241, 343, 463, 601, 757, 931, 1123, 1333, 1561, 1807, 2071, 2353, 2653, 2971, 3307, 3661, 4033, 4423, 4831, 5257, 5701, 6163, 6643, 7141, 7657, 8191, 8743, 9313, 9901, 10507, 11131, 11773, 12433, 13111, 13807, 14521, 15253, 16003, 16771, 17557
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

4th row of A082039, case k = 3 of family T(n,k) = k^2*n^2 + k*n + 1.
a(n)^2 = 81*n^4 + 54*n^3 + 27*n^2 + 6*n + 1 = (24*((3*((3*n^2 + n)/2)^2 + ((3*n^2 + n)/2))/2) + 1). Therefore, (a(n)^2 - 1)/24 is a second pentagonal number (A005449) of index number equal to the n-th second pentagonal number. For example, a(30) = 8191 and (8191^2 - 1)/24 = (67092481 - 1)/24 = 2795520, the 1365th second pentagonal number. 1365 is the 30th second pentagonal number. - Raphie Frank, Sep 19 2012
For n >= 1, a(n) is the number of vertices in the hex derived network HDN1(n+1) from the Manuel et al. reference (see HFN1(4) in Fig. 8). - Emeric Deutsch, May 21 2018
4*a(n) - 3 is a square. - Muniru A Asiru, May 24 2018

Crossrefs

Partial sums of A019557.

Programs

Formula

a(n) = 18*n + a(n-1) - 6 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = A045945(n) + 1: subsequence of A002061. - Muniru A Asiru, May 26 2018
a(n) = A003215(n) + 6*A000290(n). - Leo Tavares, Jul 14 2023
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (1 + 10*x + 7*x^2)/(1 - x)^3.
E.g.f.: (1 + 12*x + 9*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A008340 Coordination sequence for E_8 lattice.

Original entry on oeis.org

1, 240, 9120, 121680, 864960, 4113840, 14905440, 44480400, 114879360, 265422960, 561403680, 1105317840, 2050966080, 3620750640, 6126497760, 9994133520, 15792541440, 24266930160, 36377039520, 53340513360, 76681767360
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Maple
    if n = 0 then 1 else 456/7*n^7-120*n^6+312*n^5-120*n^4-48*n^3+240*n^2-624/7*n;
  • Mathematica
    Join[{1},Table[456/7*n^7-120*n^6+312*n^5-120*n^4-48*n^3+ 240*n^2- 624/7*n,{n,20}]] (* Harvey P. Dale, Jul 14 2014 *)

Formula

a(n) = if n = 0 then 1 else (456/7)*n^7-120*n^6+312*n^5-120*n^4-48*n^3+240*n^2-(624/7)*n.
Bacher et al. give a g.f.
G.f.: (x^8 +232*x^7 +24508*x^6 +107224*x^5 +133510*x^4 +55384*x^3 +7228*x^2 +232*x +1)/(x -1)^8 = 1 + 240*x* (1+30*x+231*x^2+556*x^3+447*x^4+102*x^5+x^6) /(1-x)^8. [Colin Barker, Sep 26 2012]

Extensions

The values given by O'Keeffe are incorrect.

A008399 Coordination sequence for E_6 lattice.

Original entry on oeis.org

1, 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104, 2376126, 3816648, 5885028, 8767512, 12684042, 17891064, 24684336, 33401736, 44426070, 58187880, 75168252, 95901624, 120978594, 151048728, 186823368, 229078440, 278657262, 336473352, 403513236
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Magma
    [1] cat [9*n*(13*n^2+7)*(n^2+1)/5: n in [1..40]]; // G. C. Greubel, May 29 2023
    
  • Maple
    1, seq(117/5*n^5+36*n^3+63/5*n, n=1..30);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,72,1062,6696,26316,77688, 189810},30] (* Harvey P. Dale, Oct 24 2022 *)
  • SageMath
    [9*n*(13*n^2+7)*(n^2+1)//5 +int(n==0) for n in range(41)] # G. C. Greubel, May 29 2023

Formula

a(n) = 9*n*(13*n^2+7)*(n^2+1)/5 for n >= 1.
Bacher et al. give a g.f.
G.f.: (1+66*x+645*x^2+1384*x^3+645*x^4+66*x^5+x^6)/(1-x)^6 = 1 + 18*x*(4+35*x+78*x^2+35*x^3+4*x^4)/(1-x)^6. - Colin Barker, Sep 26 2012
E.g.f.: 1 + (1/5)*x*(360 + 2295*x + 3105*x^2 + 1170*x^3 + 117*x^4 )*exp(x). - G. C. Greubel, May 29 2023

A323183 Consider the family of configurations E where E(0) consists of a single equilateral triangle, and for any k >= 0, E(k+1) is obtained by applying the Equithirds substitution to E(k). For k >= 5, the central node of E(k) has 6 equivalent tetravalent neighbors; let t(k) be the coordination sequence for one of those tetravalent nodes. This sequence is the limit of t(k) as k goes to infinity.

Original entry on oeis.org

1, 4, 20, 39, 55, 71, 91, 107, 129, 147, 165, 181, 197, 217, 233, 253, 269, 289, 305, 325, 341, 361, 377, 399, 417, 435, 453, 471, 489, 507, 525, 543, 559, 575, 595, 611, 631, 647, 667, 683, 703, 719, 739, 755, 775, 791, 811, 827, 847, 863, 883, 899, 919, 935
Offset: 0

Views

Author

Rémy Sigrist, Jan 06 2019

Keywords

Comments

The variant relative to the central node appears to match A019557.

Crossrefs

Cf. A019557, A323187 (partial sums).
Previous Showing 21-25 of 25 results.