cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A244593 Decimal expansion of z_c = phi^5 (where phi is the golden ratio), a lattice statistics constant which is the exact value of the critical activity of the hard hexagon model.

Original entry on oeis.org

1, 1, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7, 4, 2
Offset: 2

Views

Author

Jean-François Alcover, Jul 01 2014

Keywords

Comments

Essentially the same digit sequence as A239798, A019863 and A019827. - R. J. Mathar, Jul 03 2014
The minimal polynomial of this constant is x^2 - 11*x - 1. - Joerg Arndt, Jan 01 2017

Examples

			11.09016994374947424102293417182819058860154589902881431067724311352630...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 83.

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^5, 10, 103] // First
  • PARI
    (5*sqrt(5)+11)/2 \\ Charles R Greathouse IV, Aug 10 2016

Formula

Equals ((1 + sqrt(5))/2)^5 = (11 + 5*sqrt(5))/2.
Equals phi^5 = 11 + 1/phi^5 = 3 + 5*phi, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Nov 11 2023
Equals lim_{n->infinity} S(n, 5*(-1 + 2*phi))/ S(n-1, 5*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A296182 Decimal expansion of (2 + phi)/2, with the golden section phi from A001622.

Original entry on oeis.org

1, 8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6
Offset: 1

Views

Author

Wolfdieter Lang, Jan 08 2018

Keywords

Comments

In a regular pentagon this is the distance between a vertex and the midpoint of the opposite side in units of the radius of the circumscribing circle.

Examples

			1.809016994374947424102293417182819058860154589902881431067724311352630231409451...
		

Crossrefs

Programs

Formula

Equals (2 + phi)/2 = (5 + sqrt(5))/4 = (2*phi - 1)*phi/2 = with phi from A001622.
Equals 1 + A019863.
From Amiram Eldar, Nov 28 2024: (Start)
Equals 1/A322159.
Equals Product_{k>=0} (1 + 1/A081003(k)). (End)

A204188 Decimal expansion of sqrt(5)/4.

Original entry on oeis.org

5, 5, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7
Offset: 0

Views

Author

Jonathan Sondow, Jan 14 2012

Keywords

Comments

Equals Product_{n>=1} (1 - 1/A000032(2^n)).
Essentially the same as A019863 and A019827. - R. J. Mathar, Jan 16 2012
The value is the distance of the W point of the Wigner-Seitz cell of the body-centered cubic lattice (that is the Brioullin zone of the face-centered cubic lattice) to its four nearest neighbors. Let the points of the simple cubic lattice be at (1,0,0), (0,1,0), (1,0,0) etc and the point in the cube center at (1/2, 1/2, 1/2). Then W is at (0, 1/4, 1/2) [or any of the 24 symmetry related positions like (0, 3/4, 1/2), (0, 1/2, 1/4) etc.], and the four lattice points closest to W are at (-1/2, 1/2, 1/2), (0,0,0), (1/2, 1/2, 1/2) and (0,0,1). - R. J. Mathar, Aug 19 2013

Examples

			0.5590169943749474241022934171828190588601545899028814310677243113526302...
		

Crossrefs

Programs

Formula

Equals sqrt(5)/4 = (-1 + 2*phi)/4, with the golden section phi from A001622.
Equals 5*A020837.

A340723 Decimal expansion of Gamma(3/10).

Original entry on oeis.org

2, 9, 9, 1, 5, 6, 8, 9, 8, 7, 6, 8, 7, 5, 9, 0, 6, 2, 8, 3, 1, 2, 5, 1, 6, 5, 1, 5, 9, 0, 4, 9, 1, 7, 7, 9, 1, 1, 1, 2, 8, 0, 6, 0, 2, 4, 9, 2, 1, 7, 1, 5, 1, 1, 2, 7, 4, 4, 1, 1, 9, 6, 5, 0, 9, 5, 6, 3, 8, 8, 7, 6, 7, 8, 7, 6, 3, 2, 0, 2, 1, 7, 9
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			2.991568987687590628312...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(3/10),120) ;
  • Mathematica
    RealDigits[Gamma[3/10], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A340724 = Pi/A019863 [DLMF (5.5.3)]
this * A340722 * 2^(1/10)/sqrt(2*Pi) = A340721. [DLMF (5.5.5)]

A019866 Decimal expansion of sine of 57 degrees.

Original entry on oeis.org

8, 3, 8, 6, 7, 0, 5, 6, 7, 9, 4, 5, 4, 2, 4, 0, 2, 9, 6, 3, 7, 5, 9, 0, 9, 4, 1, 8, 0, 4, 5, 4, 7, 8, 9, 4, 0, 3, 9, 5, 0, 0, 2, 6, 5, 0, 9, 5, 9, 2, 3, 8, 2, 4, 9, 2, 2, 0, 1, 2, 9, 0, 2, 9, 2, 2, 6, 3, 5, 1, 6, 9, 5, 3, 4, 3, 8, 0, 6, 7, 7, 5, 1, 3, 4, 7, 3, 9, 8, 3, 9, 2, 2, 9, 7, 4, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

A049661 a(n) = (Fibonacci(6*n+1) - 1)/4.

Original entry on oeis.org

0, 3, 58, 1045, 18756, 336567, 6039454, 108373609, 1944685512, 34895965611, 626182695490, 11236392553213, 201628883262348, 3618083506169055, 64923874227780646, 1165011652593882577, 20905285872462105744
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(6*n+1)-1)/4: n in [0..20] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Table[(Fibonacci[6n+1]-1)/4,{n,0,20}] (* or *) LinearRecurrence[ {19,-19,1},{0,3,58},20] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    a(n)=fibonacci(6*n+1)>>2 \\ Charles R Greathouse IV, Aug 23 2011

Formula

From R. J. Mathar, Nov 04 2008: (Start)
G.f.: x*(3+x)/((1-x)*(1-18*x+x^2)).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). (End)
a(n) = (-1/4+1/40*(9+4*sqrt(5))^(-n)*(5-sqrt(5)+(5+sqrt(5))*(9+4*sqrt(5))^(2*n))). - Colin Barker, Mar 03 2016
Product_{n>=1} (1 - 1/a(n)) = (sqrt(5)+3)/8 = phi^2/4 = cos(Pi/5)^2 = A019863^2 = (A374149 + 1)/10. - Amiram Eldar, Nov 28 2024

A019848 Decimal expansion of sine of 39 degrees.

Original entry on oeis.org

6, 2, 9, 3, 2, 0, 3, 9, 1, 0, 4, 9, 8, 3, 7, 4, 5, 2, 7, 0, 5, 9, 0, 2, 4, 5, 8, 2, 7, 9, 9, 7, 0, 4, 2, 6, 5, 6, 6, 8, 6, 2, 4, 1, 2, 1, 2, 9, 8, 6, 6, 6, 3, 9, 4, 6, 0, 3, 2, 8, 0, 2, 5, 7, 8, 0, 7, 5, 3, 0, 0, 9, 9, 8, 7, 2, 1, 3, 6, 3, 6, 7, 2, 4, 6, 4, 6, 9, 4, 6, 6, 0, 6, 8, 9, 9, 9, 8, 9
Offset: 0

Views

Author

Keywords

Comments

This sequence is also decimal expansion of cosine of 51 degrees. - Mohammad K. Azarian, Jun 29 2013
An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Crossrefs

Programs

Formula

A237129 Let d = d(1)d(2)... d(q) denote the decimal expansion of an angle d expressed in degrees. The sequence a(n) lists the angles such that sin(d) = cos(d(1)*d(2)*... *d(q)).

Original entry on oeis.org

90, 418, 450, 666, 726, 778, 786, 810, 1146, 1170, 1386, 1395, 1530, 1775, 1890, 2218, 2250, 2394, 2474, 2482, 2610, 2842, 2898, 2970, 3186, 3195, 3312, 3330, 3366, 3375, 3690, 3711, 3735, 3915, 3933, 3978, 4050, 4146, 4194, 4274, 4282, 4338, 4410, 4698, 4770
Offset: 1

Views

Author

Michel Lagneau, Feb 04 2014

Keywords

Examples

			666 is in the sequence because sin(666°) = cos(6*6*6°) = -.8090169943749... = -phi/2 where phi is the golden ratio (1+sqrt(5))/2. (A019863)
418 is in the sequence because sin(418°) = cos(4*1*8°)= .84804809615... (A019867)
3915 is in the sequence because sin(3915°) = cos(3*9*1*5°)= -.70710678118654752440 = -1/sqrt(2). (A010503)
		

Programs

  • Maple
    with(numtheory):err:=1/10^10:Digits:=20:for n from 1 to 5000 do:x:=convert(n,base,10):n1:=nops(x):p:=product('x[i]', 'i'=1..n1):s1:=evalf(sin(n*Pi/180)):s2:=evalf(cos(p*Pi/180)):if abs(s1-s2)
    				

A340724 Decimal expansion of Gamma(7/10).

Original entry on oeis.org

1, 2, 9, 8, 0, 5, 5, 3, 3, 2, 6, 4, 7, 5, 5, 7, 7, 8, 5, 6, 8, 1, 1, 7, 1, 1, 7, 9, 1, 5, 2, 8, 1, 1, 6, 1, 7, 7, 8, 4, 1, 4, 1, 1, 7, 0, 5, 5, 3, 9, 4, 6, 2, 4, 7, 9, 2, 1, 6, 4, 5, 3, 8, 8, 2, 5, 4, 1, 6, 8, 1, 5, 0, 8, 1, 8, 9, 7, 5, 7, 9, 8, 6
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.29805533264755778568...
		

Crossrefs

Programs

Formula

this * A340723 = Pi/A019863 [DLMF (5.5.3)]
this * A175380 * 2^(9/10)/sqrt(2*Pi) = 2*A246745. [DLMF (5.5.5)]

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025
Previous Showing 21-30 of 33 results. Next