cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A053061 a(n) is the decimal concatenation of n and n^2.

Original entry on oeis.org

11, 24, 39, 416, 525, 636, 749, 864, 981, 10100, 11121, 12144, 13169, 14196, 15225, 16256, 17289, 18324, 19361, 20400, 21441, 22484, 23529, 24576, 25625, 26676, 27729, 28784, 29841, 30900, 31961, 321024, 331089, 341156, 351225, 361296, 371369, 381444, 391521
Offset: 1

Views

Author

Felice Russo, Feb 25 2000

Keywords

References

  • Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press 2000

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n^2) cat Intseq(n)): n in [1..40]]; // Vincenzo Librandi, Jan 03 2015
    
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[n^2]]],{n,40}] (* Harvey P. Dale, May 24 2012 *)
  • Python
    def a(n): return int(str(n) + str(n*n))
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Nov 24 2021

Formula

a(n) = n*(10^floor(2*log_10(n) + 1) + n). - Henry Bottomley, May 18 2000
a(n) ~ n^3. - Charles R Greathouse IV, Sep 19 2012

Extensions

More terms from James Sellers, Feb 28 2000

A009470 a(n) is the concatenation of n and 8n.

Original entry on oeis.org

18, 216, 324, 432, 540, 648, 756, 864, 972, 1080, 1188, 1296, 13104, 14112, 15120, 16128, 17136, 18144, 19152, 20160, 21168, 22176, 23184, 24192, 25200, 26208, 27216, 28224, 29232, 30240, 31248, 32256, 33264, 34272, 35280, 36288, 37296, 38304, 39312
Offset: 1

Views

Author

Keywords

Comments

All terms are divisible by 9. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), this sequence (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(8*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn8=IntegerDigits[8n]}, FromDigits[Join[idn,idn8]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 8*n)); \\ Michel Marcus, Sep 21 2015

A009474 a(n) is the concatenation of n and 9n.

Original entry on oeis.org

19, 218, 327, 436, 545, 654, 763, 872, 981, 1090, 1199, 12108, 13117, 14126, 15135, 16144, 17153, 18162, 19171, 20180, 21189, 22198, 23207, 24216, 25225, 26234, 27243, 28252, 29261, 30270, 31279, 32288, 33297, 34306, 35315, 36324, 37333, 38342, 39351
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), this sequence (k=9).

Programs

  • Magma
    [Seqint(Intseq(9*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn9=IntegerDigits[9n]}, FromDigits[Join[idn, idn9]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)

A009440 a(n) is the concatenation of n and 6n.

Original entry on oeis.org

16, 212, 318, 424, 530, 636, 742, 848, 954, 1060, 1166, 1272, 1378, 1484, 1590, 1696, 17102, 18108, 19114, 20120, 21126, 22132, 23138, 24144, 25150, 26156, 27162, 28168, 29174, 30180, 31186, 32192, 33198, 34204, 35210, 36216, 37222, 38228, 39234, 40240
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), this sequence (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(6*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn6=IntegerDigits[6n]}, FromDigits[Join[idn, idn6]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
    Table[n*10^IntegerLength[6n]+6n,{n,40}] (* Harvey P. Dale, Jul 21 2020 *)

A009441 a(n) is the concatenation of n and 7n.

Original entry on oeis.org

17, 214, 321, 428, 535, 642, 749, 856, 963, 1070, 1177, 1284, 1391, 1498, 15105, 16112, 17119, 18126, 19133, 20140, 21147, 22154, 23161, 24168, 25175, 26182, 27189, 28196, 29203, 30210, 31217, 32224, 33231, 34238, 35245, 36252, 37259, 38266, 39273, 40280
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), this sequence (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(7*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn7=IntegerDigits[7n]}, FromDigits[Join[idn, idn7]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
    Table[n*10^IntegerLength[7n]+7n,{n,40}] (* Harvey P. Dale, Aug 02 2024 *)

A019551 a(n) is the concatenation of n and 3n.

Original entry on oeis.org

13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236, 1339, 1442, 1545, 1648, 1751, 1854, 1957, 2060, 2163, 2266, 2369, 2472, 2575, 2678, 2781, 2884, 2987, 3090, 3193, 3296, 3399, 34102, 35105, 36108
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), this sequence (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(3*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    a:=n->n*10^floor(log10(3*n)+1)+3*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn3=IntegerDigits[3n]}, FromDigits[Join[idn, idn3]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
    Table[n*10^IntegerLength[3n]+3n,{n,40}] (* Harvey P. Dale, Apr 24 2022 *)

A019552 a(n) is the concatenation of n and 4n.

Original entry on oeis.org

14, 28, 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 1248, 1352, 1456, 1560, 1664, 1768, 1872, 1976, 2080, 2184, 2288, 2392, 2496, 25100, 26104, 27108, 28112, 29116, 30120, 31124, 32128, 33132, 34136, 35140, 36144, 37148, 38152, 39156, 40160, 41164
Offset: 1

Views

Author

R. Muller

Keywords

Comments

a(n) is divisible by 4 for n >= 2. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), this sequence (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(4*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    a:=n->n*10^floor(log10(4*n)+1)+4*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[4n]]],{n,50}] (* Harvey P. Dale, May 11 2011 *)
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn4=IntegerDigits[4n]}, FromDigits[Join[idn, idn4]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 4*n)); \\ Michel Marcus, Sep 21 2015

A019553 a(n) is the concatenation of n and 5n.

Original entry on oeis.org

15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, 1365, 1470, 1575, 1680, 1785, 1890, 1995, 20100, 21105, 22110, 23115, 24120, 25125, 26130, 27135, 28140, 29145, 30150, 31155, 32160, 33165, 34170, 35175, 36180, 37185, 38190, 39195, 40200
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms are divisible by 15. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), this sequence (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(5*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    a:=n->n*10^floor(log10(5*n)+1)+5*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    n5n[n_]:=Module[{n5=5n},n*10^IntegerLength[n5]+n5]; Array[n5n,40] (* Harvey P. Dale, Apr 08 2012 *)
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn5=IntegerDigits[5n]}, FromDigits[Join[idn, idn5]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 5*n)); \\ Michel Marcus, Sep 21 2015

A064001 Odd abundant numbers not divisible by 5.

Original entry on oeis.org

81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729, 742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071
Offset: 1

Views

Author

Harvey P. Dale, Sep 17 2001

Keywords

Comments

Or, odd abundant numbers that do not end in 5.
All terms below 2000000 are divisible by 21 (so by 3). Moreover, except for a few, most are divisible by 231. - Labos Elemer, Sep 15 2005 [The least term that is not divisible by 21 is a(908) = 28683369. - Amiram Eldar, Jan 27 2025]
An odd abundant number (see A005231) not divisible by 3 nor 5 must have at least 15 distinct prime factors (e.g., 61#/5#*7^2*11*13*17, where # is primorial) and be >= 67#/5#*77 = A047802(3) ~ 2.0*10^25. -- The smallest non-primitive abundant number (cf. A006038) in this sequence is 7*a(1) = 567567 = a(14). - M. F. Hasler, Jul 27 2016
There are 26 terms less than 10^6 and a surprising fact is that 18 of them are doublets (cf. A020338). - Omar E. Pol, Jan 17 2025
The numbers of terms that do not exceed 10^k, for k = 5, 6, ..., are 1, 26, 290, 3071, 31600, 320948, 3174762, 31693948, ... . Apparently, the asymptotic density of this sequence equals 0.000031... . Therefore, the least term not divisible by 3 that was mentioned above is a(~6*10^20) = 20169691981106018776756331. - Amiram Eldar, Jan 27 2025

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Rev. ed. 1997, p. 169.

Crossrefs

Intersection of A005231 and A047201.
Cf. A020338.

Programs

  • Mathematica
    Select[ Range[ 1, 10^6, 2 ], DivisorSigma[ 1, # ] - 2# > 0 && Mod[ #, 5 ] != 0 & ]
    ta={{0}};Do[g=n;s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&!Equal[Mod[n, 2], 0]&& !Equal[Mod[n, 5], 0], Print[n];ta=Append[ta, n]], {n, 1, 2000000}] ta=Delete[ta, 1] (* Labos Elemer, Sep 15 2005 *)
  • PARI
    { n=0; forstep (m=1, 10^9, 2, if (m%5 && sigma(m) > 2*m, write("b064001.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 05 2009

Extensions

More terms from Robert G. Wilson v, Sep 28 2001
Further terms from Labos Elemer, Sep 15 2005
Entry revised by N. J. A. Sloane, Mar 28 2006

A020331 Numbers whose base-3 representation is the juxtaposition of two identical strings.

Original entry on oeis.org

4, 8, 30, 40, 50, 60, 70, 80, 252, 280, 308, 336, 364, 392, 420, 448, 476, 504, 532, 560, 588, 616, 644, 672, 700, 728, 2214, 2296, 2378, 2460, 2542, 2624, 2706, 2788, 2870, 2952, 3034, 3116, 3198, 3280, 3362, 3444, 3526, 3608, 3690, 3772, 3854, 3936, 4018
Offset: 1

Views

Author

David W. Wilson, Melia Aldridge (ma38(AT)spruce.evansville.edu)

Keywords

Examples

			50_10 = 1212_3. - _Jon E. Schoenfield_, Feb 11 2021
		

Crossrefs

Programs

  • Mathematica
    b3iQ[n_]:=Module[{idn3=IntegerDigits[n,3],len},len=Length[idn3];EvenQ[ len] && Take[idn3,len/2]==Take[idn3,-len/2 ]]; Select[Range[5000],b3iQ] (* Harvey P. Dale, Feb 08 2015 *)
    a[n_] := n + n*3^Floor[Log[3, n] + 1]; Array[a, 50] (* Amiram Eldar, Apr 06 2021 *)

Formula

a(n) = n*3^floor(log_3(n)+1) + n. - Ilya Gutkovskiy, Jan 26 2018
Previous Showing 11-20 of 64 results. Next