A071379
a(n) = (1/e) * Sum_{k>=0} ((k+4)!/k!)^(n-1)/k!.
Original entry on oeis.org
1, 1, 209, 163121, 326922081, 1346634725665, 9939316337679281, 119802044788535500753, 2205421644124274191535553, 58945667435045762187763602753, 2198513228897522394476415669503377, 110833342180980170285766876408530089329
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A071379 := proc(n) local r,s,i;
if n=0 then 1 else r := [seq(5,i=1..n-1)]; s := [seq(1,i=1..n-1)];
exp(-x)*24^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(A071379(n),n=0..10); # Peter Luschny, Mar 30 2011
-
a[n_] := Sum[FactorialPower[k, 4]^n/k!, {k, 4, Infinity}]/E; a[0] = 1; Array[a, 12, 0] (* Jean-François Alcover, Sep 01 2016 *)
-
default(realprecision, 500); for(n=0, 20, print1(if(n==0, 1, round(exp(-1)*sum(k=0, 500, ((k+4)!/k!)^(n-1)/k!))), ", ")) \\ G. C. Greubel, May 15 2018
A208021
T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 7, 7, 5, 15, 87, 270, 87, 15, 52, 1657, 27093, 27093, 1657, 52, 203, 43833, 5252041, 30066912, 5252041, 43833, 203, 877, 1515903, 1688298227, 80318704605, 80318704605, 1688298227, 1515903, 877, 4140, 65766991
Offset: 1
Table starts
...1........1............2...............5...............15..............52
...1........1............7..............87.............1657...........43833
...2........7..........270...........27093..........5252041......1688298227
...5.......87........27093........30066912......80318704605.421673189900658
..15.....1657......5252041.....80318704605.3662498214110836
..52....43833...1688298227.421673189900658
.203..1515903.819147302097
.877.65766991
...
Some solutions for n=4 k=3
..0..1..2....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..2
..2..3..4....2..3..2....2..3..2....2..3..2....2..3..2....2..3..2....2..3..0
..5..6..0....4..0..4....0..1..0....4..1..0....0..1..0....0..4..0....4..5..4
..2..3..1....1..2..1....2..3..4....5..2..3....2..4..2....1..2..1....0..1..2
A216078
Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order.
Original entry on oeis.org
1, 1, 3, 7, 27, 87, 409, 1657, 9089, 43833, 272947, 1515903, 10515147, 65766991, 501178937, 3473600465, 28773452321, 218310229201, 1949230218691, 16035686850327, 153281759047387, 1356791248984295, 13806215066685433, 130660110400259849, 1408621900803060705
Offset: 1
Some solutions for n = 5:
x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x
x 2 x 0 x 0 x 2 x 0 x 1 x 1 x 2 x 2 x 1
0 x 2 x 1 x 3 x 1 x 0 x 2 x 3 x 0 x 0 x
x 3 x 1 x 2 x 2 x 0 x 1 x 1 x 1 x 2 x 0
There are 4 white squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 4 ways to place 1 and 2 ways to place 2 so a(4) = 1 + 4 + 2 = 7. - _Andrew Howroyd_, Jun 06 2017
-
a:= n-> (m-> add(binomial(m, k)*combinat[bell](m+k+e)
, k=0..m))(iquo(n-1, 2, 'e')):
seq(a(n), n=1..26); # Alois P. Heinz, Oct 03 2022
-
a[n_] := Module[{m, e}, {m, e} = QuotientRemainder[n - 1, 2];
Sum[Binomial[m, k]*BellB[m + k + e], {k, 0, m}]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 25 2022, after Francesca Aicardi *)
A069948
a(n) = 1/exp(1) * Sum_{k>=0} (k+n)!^2 / k!^3.
Original entry on oeis.org
1, 5, 87, 2971, 163121, 12962661, 1395857215, 194634226067, 33990369362241, 7247035915622821, 1848636684656077991, 555005864462114884875, 193458213840943964983537, 77399534126148191747554181, 35196002960227350045891984591, 18037244723394790042393195636291
Offset: 0
-
A069948 := proc(n) exp(-x)*n!^2*hypergeom([n+1,n+1],[1,1],x);
round(evalf(subs(x=1,%),99)) end:
seq(A069948(n),n=0..13); # Peter Luschny, Mar 30 2011
# second Maple program:
a:= n-> sum((k+n)!^2/k!^3, k=0..infinity)/exp(1):
seq(a(n), n=0..15); # Alois P. Heinz, May 17 2018
-
f[n_] := f[n] = Sum[(k + n)!^3/((k + n)!*(k!^3)*E), {k, 0, Infinity}]; Table[ f[n], {n, 0, 13}] (* or *)
Table[n!^2*HypergeometricPFQ[{n + 1, n + 1}, {1, 1}, 1]/Exp[1], {n, 0, 13}] (* Robert G. Wilson v, Jan 11 2007 *)
-
{default(realprecision, 200)}; for(n=0,30, print1(round(exp(-1)*(n!)^2*sum(k=0,500, binomial(n+k, k)^2/k!)), ", ")) \\ G. C. Greubel, May 17 2018
A090209
Generalized Bell numbers (from (5,5)-Stirling2 array A090216).
Original entry on oeis.org
1, 1, 1546, 12962661, 363303011071, 25571928251231076, 3789505947767235111051, 1049433111253356296672432821, 498382374325731085522315594481036, 380385281554629647028734545622539438171, 443499171330317702437047276255605780991365151
Offset: 0
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
- G. C. Greubel, Table of n, a(n) for n = 0..115
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem., arXiv:quant-ph/0402027, Phys. Lett. A 309 (3-4) (2003) 198-205
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
-
A071379 := proc(n) local r,s,i;
if n=0 then 1 else r := [seq(6,i=1..n-1)]; s := [seq(1,i=1..n-1)];
exp(-x)*5!^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(A071379(n),n=0..8); # Peter Luschny, Mar 30 2011
-
fallfac[n_, k_] := Pochhammer[n-k+1, k]; a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*fallfac[p, 5]^n, {p, 5, k}]; a[0] = 1; a[n_] := Sum[a[n, k], {k, 5, 5*n}]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Mar 05 2014 *)
A182933
Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1
Offset: 0
-
A182933_AsSquareArray := proc(n,k) local r,s,i;
r := [seq(n+1,i=1..k)]; s := [seq(1,i=1..k-1),2];
exp(-x)*n!^k*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) end:
seq(lprint(seq(A182933_AsSquareArray(n,k),k=0..6)),n=0..6);
-
a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
A283153
Number of set partitions of unique elements from an n X 4 matrix where elements from the same row may not be in the same partition.
Original entry on oeis.org
1, 209, 163121, 326922081, 1346634725665, 9939316337679281, 119802044788535500753, 2205421644124274191535553, 58945667435045762187763602753, 2198513228897522394476415669503377, 110833342180980170285766876408530089329, 7356710448423295420590529054176924329802529, 628972339934967292421997567343442748145219556449
Offset: 1
- Indranil Ghosh, Table of n, a(n) for n = 1..50
- M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition
- Marko Riedel, Maple code for generalized Bell numbers, A000110, A020556, A069223, A283153, A283154, A283155, optimized version
-
Table[(4!^n) * Sum[Binomial[p,4]^n/p! * Sum[(-1)^k/k!,{k,0,4n-p}],{p,1,4n}],{n,1,50}] (* Indranil Ghosh, Mar 04 2017 *)
-
a(n) = (4!^n) * sum(p=1, 4*n, binomial(p,4)^n/p! * sum(k=0, 4*n-p, (-1)^k/k!)); \\ Indranil Ghosh, Mar 04 2017
A090211
Alternating row sums of array A078739 ((2,2)-Stirling2).
Original entry on oeis.org
1, -1, -1, 41, -375, -3001, 177063, -990543, -144800527, 3644593711, 214013895023, -12488200175463, -553322483517383, 61495192102867639, 2469939623420627543, -448608666325921194271, -19104207797417792353951, 4742067751530355028847327
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Cf. -
A000587(n) from Stirling2 case
A008277 with a(0) := -1.
A020556 (non-alternating sum, generalized Bell-numbers).
-
a[n_] := Sum[(-1)^k FactorialPower[k, 2]^n/k!, {k, 2, Infinity}]*E; Array[a, 18] (* Jean-François Alcover, Sep 01 2016 *)
A098631
Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 2, 28, 696, 26512, 1402656, 97017792, 8418174848, 889241719040, 111774837350912, 16420543334734848, 2778708477919836160, 535183812199464341504, 116142946557502449852416, 28156854547845767203373056, 7569375509914847295271043072, 2241898693518356603925445017600
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A182930
Triangle read by rows: Number of set partitions of {1,2,..,n} such that |k| is a block and no block |m| with m < k exists, (1 <= n, 1 <= k <= n).
Original entry on oeis.org
1, 1, 0, 2, 1, 1, 5, 3, 2, 1, 15, 10, 7, 5, 4, 52, 37, 27, 20, 15, 11, 203, 151, 114, 87, 67, 52, 41, 877, 674, 523, 409, 322, 255, 203, 162, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 715, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 3425
Offset: 1
T(4,2) = card({2|134, 2|3|14, 2|4|13}) = 3.
[1] 1,
[2] 1, 0,
[3] 2, 1, 1,
[4] 5, 3, 2, 1,
[5] 15, 10, 7, 5, 4,
[6] 52, 37, 27, 20, 15, 11,
[-1-] [-2-] [-3-] [-4-] [-5-] [-6-]
-
T := proc(n, k) option remember; if n = 1 then 1 elif n = k then T(n-1,1) - T(n-1,n-1) else T(n-1,k) + T(n, k+1) fi end:
A182930 := (n,k) -> T(n,k); seq(print(seq(A182930(n,k),k=1..n)),n=1..6);
-
T[n_, k_] := T[n, k] = Which[n == 1, 1, n == k, T[n-1, 1] - T[n-1, n-1], True, T[n-1, k] + T[n, k+1]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 22 2019 *)
Comments