cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A382686 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372272.

Original entry on oeis.org

3, 6, 0, 7, 6, 1, 5, 7, 3, 0, 4, 8, 1, 3, 8, 6, 0, 7, 5, 6, 9, 8, 3, 3, 5, 1, 3, 8, 3, 7, 7, 1, 6, 1, 1, 1, 6, 6, 1, 5, 2, 1, 8, 9, 2, 7, 4, 6, 7, 4, 5, 4, 8, 2, 2, 8, 9, 7, 3, 9, 2, 4, 0, 2, 3, 7, 1, 4, 0, 0, 3, 7, 8, 3, 7, 2, 6, 1, 7, 1, 8, 3, 2, 0, 9, 6, 2
Offset: 0

Views

Author

A.H.M. Smeets, Apr 03 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
6 | A372271, A372272, A372273 | A382107, this sequence, A382687

Examples

			0.36076157304813860756983351383771611166152189274674...
		

Crossrefs

Cf. A372272.

A382687 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372273.

Original entry on oeis.org

1, 7, 1, 3, 2, 4, 4, 9, 2, 3, 7, 9, 1, 7, 0, 3, 4, 5, 0, 4, 0, 2, 9, 6, 1, 4, 2, 1, 7, 2, 7, 3, 2, 8, 9, 3, 5, 2, 6, 8, 2, 2, 5, 0, 1, 4, 8, 4, 0, 4, 3, 9, 8, 2, 3, 9, 8, 6, 3, 5, 4, 3, 9, 7, 9, 8, 9, 4, 5, 7, 6, 0, 5, 4, 2, 3, 4, 0, 1, 5, 4, 6, 4, 7, 9, 2, 7
Offset: 0

Views

Author

A.H.M. Smeets, Apr 03 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
6 | A372271, A372272, A372273 | A382107, A382686, this sequence

Examples

			0.17132449237917034504029614217273289352682250148404...
		

Crossrefs

Cf. A372273.

A382688 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372274.

Original entry on oeis.org

3, 8, 1, 8, 3, 0, 0, 5, 0, 5, 0, 5, 1, 1, 8, 9, 4, 4, 9, 5, 0, 3, 6, 9, 7, 7, 5, 4, 8, 8, 9, 7, 5, 1, 3, 3, 8, 7, 8, 3, 6, 5, 0, 8, 3, 5, 3, 3, 8, 6, 2, 7, 3, 4, 7, 5, 1, 0, 8, 3, 4, 5, 1, 0, 3, 0, 7, 0, 5, 5, 4, 6, 4, 3, 4, 1, 2, 9, 7, 0, 8, 3, 4
Offset: 0

Views

Author

A.H.M. Smeets, Apr 03 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, A372276 | this sequence, A382689, A382690

Examples

			0.3818300505051189449503697754889751338783650835338627...
		

Crossrefs

Cf. A372274.

A382689 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372275.

Original entry on oeis.org

2, 7, 9, 7, 0, 5, 3, 9, 1, 4, 8, 9, 2, 7, 6, 6, 6, 7, 9, 0, 1, 4, 6, 7, 7, 7, 1, 4, 2, 3, 7, 7, 9, 5, 8, 2, 4, 8, 6, 9, 2, 5, 0, 6, 5, 2, 2, 6, 5, 9, 8, 7, 6, 4, 5, 3, 7, 0, 1, 4, 0, 3, 2, 6, 9, 3, 6, 1, 8, 8, 1, 0, 4, 3, 0, 5, 6, 2, 6, 7, 6, 8, 1, 3, 2, 4, 0
Offset: 0

Views

Author

A.H.M. Smeets, Apr 03 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, A372276 | A382688, this sequence, A382690

Examples

			0.279705391489276667901467771423779582486925065226598764...
		

Crossrefs

Cf. A372275.

A382690 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372276.

Original entry on oeis.org

1, 2, 9, 4, 8, 4, 9, 6, 6, 1, 6, 8, 8, 6, 9, 6, 9, 3, 2, 7, 0, 6, 1, 1, 4, 3, 2, 6, 7, 9, 0, 8, 2, 0, 1, 8, 3, 2, 8, 5, 8, 7, 4, 0, 2, 2, 5, 9, 9, 4, 6, 6, 6, 3, 9, 7, 7, 2, 0, 8, 6, 3, 8, 7, 2, 4, 6, 5, 5, 2, 3, 4, 9, 7, 2, 0, 4, 2, 3, 0, 8, 7, 1, 5, 6, 2, 5
Offset: 0

Views

Author

A.H.M. Smeets, Apr 03 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, A372276 | A382688, A382689, this sequence

Examples

			0.12948496616886969327061143267908201832858740225994666...
		

Crossrefs

Cf. A372276.

A020784 Decimal expansion of 1/sqrt(27).

Original entry on oeis.org

1, 9, 2, 4, 5, 0, 0, 8, 9, 7, 2, 9, 8, 7, 5, 2, 5, 4, 8, 3, 6, 3, 8, 2, 9, 2, 6, 8, 3, 3, 9, 8, 5, 8, 1, 8, 5, 4, 9, 2, 0, 0, 5, 8, 3, 7, 5, 6, 7, 0, 8, 9, 5, 8, 6, 7, 2, 8, 6, 7, 4, 4, 2, 1, 6, 1, 3, 2, 5, 8, 9, 0, 7, 6, 7, 6, 4, 4, 4, 4, 8, 5, 6, 4, 5, 7, 1, 7, 9, 8, 5, 2, 8, 5, 8, 3, 1, 7, 5
Offset: 0

Views

Author

Keywords

Comments

This is the minimum ripple factor for a third-order Chebyshev filter for which the generalized reflectionless topology needs no negative elements. - Matthew A. Morgan, Oct 18 2017

Examples

			0.1924500897298752548363829268339858185492005837567089586728674....
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.4.3 and 8.16, pp. 495, 527.

Crossrefs

Programs

Formula

Equals Sum_{k>=0} binomial(2*k,k) * k/16^k. - Amiram Eldar, Aug 02 2020
Equals sqrt(3)/9. - Stefano Spezia, Dec 24 2024
Equals 1/A010482 = A020760/3 = sqrt(A021031) = A073010/Pi = A212886/2. - Hugo Pfoertner, Dec 24 2024

A382105 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372269.

Original entry on oeis.org

4, 7, 8, 6, 2, 8, 6, 7, 0, 4, 9, 9, 3, 6, 6, 4, 6, 8, 0, 4, 1, 2, 9, 1, 5, 1, 4, 8, 3, 5, 6, 3, 8, 1, 9, 2, 9, 1, 2, 2, 9, 5, 5, 5, 3, 3, 4, 3, 1, 4, 1, 5, 3, 9, 9, 7, 2, 7, 2, 7, 6, 6, 7, 3, 3, 3, 8, 3, 8, 2, 6, 7, 1, 5, 2, 5, 1, 2, 4, 5, 6, 9, 7, 5, 5, 6, 2
Offset: 0

Views

Author

A.H.M. Smeets, Mar 27 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
5 | A372269, A372270 | this sequence, A382106

Examples

			0.47862867049936646804129151483563819291229555334...
		

Crossrefs

Cf. A372269.

Formula

Equals (322+13*sqrt(70))/900.

A020763 Decimal expansion of 1/sqrt(6).

Original entry on oeis.org

4, 0, 8, 2, 4, 8, 2, 9, 0, 4, 6, 3, 8, 6, 3, 0, 1, 6, 3, 6, 6, 2, 1, 4, 0, 1, 2, 4, 5, 0, 9, 8, 1, 8, 9, 8, 6, 6, 0, 9, 9, 1, 2, 4, 6, 7, 7, 6, 1, 1, 1, 6, 8, 8, 0, 7, 2, 1, 1, 5, 4, 2, 7, 8, 7, 5, 1, 6, 0, 0, 6, 2, 9, 0, 9, 5, 5, 2, 5, 0, 4, 4, 2, 3, 3, 0, 9, 9, 0, 5, 5, 1, 7, 4, 4, 0, 0, 3, 9
Offset: 0

Views

Author

Keywords

Comments

Radius of the inscribed sphere (tangent to all faces) in a regular octahedron with unit edge. - Stanislav Sykora, Nov 21 2013

Examples

			0.408248290463863016366214012450981898660991246776111688072115427875...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids in radii: A020781 (tetrahedron), A179294 (icosahedron), A237603 (dodecahedron). - Stanislav Sykora, Feb 25 2014

Programs

Formula

From Michal Paulovic, Dec 09 2022: (Start)
Equals A157697/2 = A010503 * A020760 = 1/A010464.
Equals [0, 2; 2, 4] (periodic continued fraction expansion). (End)

A195695 Decimal expansion of arcsin(sqrt(1/3)) and of arccos(sqrt(2/3)).

Original entry on oeis.org

6, 1, 5, 4, 7, 9, 7, 0, 8, 6, 7, 0, 3, 8, 7, 3, 4, 1, 0, 6, 7, 4, 6, 4, 5, 8, 9, 1, 2, 3, 9, 9, 3, 6, 8, 7, 8, 5, 5, 1, 7, 0, 0, 0, 4, 6, 7, 7, 5, 4, 7, 4, 1, 9, 5, 2, 7, 7, 7, 4, 1, 6, 6, 8, 3, 1, 9, 9, 6, 1, 5, 7, 2, 3, 9, 1, 2, 8, 0, 4, 3, 9, 2, 6, 6, 2, 5, 8, 1, 0, 0, 8, 5, 4, 3, 0, 4, 6, 0, 5
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Comments

The complementary magic angle, that is, Pi/2 - A195696. The angle between the body-diagonal and a congruent face-diagonal of a cube. And also the polar angle of the cone circumscribed to a regular tetrahedron from one of its vertices. - Stanislav Sykora, Nov 21 2013
This is the value of the angle of the circular cone to the axis, that maximizes the volume of the cone enclosed by a given area. See the +plus link. - Michel Marcus, Aug 27 2017

Examples

			arcsin(sqrt(1/3)) = 0.61547970867038734106746458912399...
		

Crossrefs

Cf. A195696 (magic angle), A195698, A020760, A157697, A243445.

Programs

  • Magma
    [Arcsin(Sqrt(1/3))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[1/3];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A195695 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A195696 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A019673 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A195698 *)
  • PARI
    atan(1/sqrt(2)) \\ Michel Marcus, Aug 27 2017
    

Formula

Also equals arctan(1/sqrt(2)). - Michel Marcus, Aug 27 2017

A097337 Integer part of the edge of a cube that has space-diagonal n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43
Offset: 1

Views

Author

Cino Hilliard, Sep 17 2004

Keywords

Comments

The first few terms are the same as A038128. However, A038128 is generated by Euler's constant = 0.5772156649015328606065120901..., which is close but not equal to 1/sqrt(3) = 0.5773502691896257645091487805..., which generates this sequence. Euler/(1/sqrt(3)) = 0.9997668585341064519813571911... and the equality fails in the 97th term.
The integers k such that a(k) = a(k+1) give A054406. - Michel Marcus, Nov 01 2021

References

  • The Universal Encyclopedia of Mathematics, English translation, 1964, p. 155.

Crossrefs

Cf. A020760 (1/sqrt(3)), A054406.

Programs

  • PARI
    f(n) = for(x=1,n,s=x\sqrt(3);print1(s","));s
    
  • PARI
    a(n)=sqrtint(n^2\3) \\ Charles R Greathouse IV, Nov 01 2021

Formula

Let L be the length of the edges. Then sqrt(2)*L is the diagonal of a face. Whence n^2 = 2*L^2 + L^2, or n = sqrt(3)*L and L = n/sqrt(3).
Previous Showing 21-30 of 56 results. Next