cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A179294 Decimal expansion of radius of inscribed sphere about a regular icosahedron with edge = 1.

Original entry on oeis.org

7, 5, 5, 7, 6, 1, 3, 1, 4, 0, 7, 6, 1, 7, 0, 7, 3, 0, 4, 8, 0, 1, 3, 3, 7, 0, 2, 0, 2, 5, 0, 0, 1, 3, 9, 2, 6, 3, 8, 4, 4, 4, 7, 8, 8, 8, 9, 3, 5, 6, 1, 0, 5, 9, 2, 2, 9, 5, 8, 2, 8, 9, 2, 0, 3, 9, 1, 0, 6, 8, 4, 5, 2, 2, 1, 9, 4, 8, 2, 6, 2, 0, 6, 3, 5, 6, 0, 4, 9, 4, 7, 6, 0, 8, 6, 8, 2, 7, 0, 4, 1, 1, 9, 3, 1
Offset: 0

Views

Author

Keywords

Comments

Icosahedron: A three-dimensional figure with 20 equilateral triangle faces, 12 vertices, and 30 edges.

Examples

			0.75576131407617073048013370202500139263844478889356105922958289203910...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids inradii: A020781 (tetrahedron), A020763 (octahedron), A237603 (dodecahedron).

Programs

  • Mathematica
    RealDigits[(Sqrt[42+18Sqrt[5]]/12), 10, 175][[1]]
  • PARI
    sqrt((7+3*sqrt(5))/6)/2 \\ Stefano Spezia, Jan 27 2025

Formula

Equals sqrt(42 + 18*sqrt(5))/12.

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 03 2011

A020761 Decimal expansion of 1/2.

Original entry on oeis.org

5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Real part of all nontrivial zeros of the Riemann zeta function (assuming the Riemann hypothesis to be true). - Alonso del Arte, Jul 02 2011
Radius of a sphere with surface area Pi. - Omar E. Pol, Aug 09 2012
Radius of the midsphere (tangent to the edges) in a regular octahedron with unit edges. Also radius of the inscribed sphere (tangent to faces) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Construct a rectangle of maximal area inside an arbitrary triangle. The ratio of the rectangle's area to the triangle's area is 1/2. - Rick L. Shepherd, Jul 30 2014

Examples

			1/2 = 0.50000000000000...
		

Crossrefs

Cf. In platonic solids:
midsphere radii:
A020765 (tetrahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron);
insphere radii:
A020781 (tetrahedron),
A020763 (octahedron),
A179294 (icosahedron),
A237603 (dodecahedron).

Programs

  • Maple
    Digits:=100; evalf(1/2); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    RealDigits[1/2, 10, 128][[1]] (* Alonso del Arte, Dec 13 2013 *)
    LinearRecurrence[{1},{5,0},99] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    { default(realprecision); x=1/2*10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Felix Fröhlich, Jul 24 2014
    
  • PARI
    a(n) = 5*(n==0); \\ Michel Marcus, Jul 25 2014

Formula

Equals Sum_{k>=1} (1/3^k). Hence 1/2 = 0.1111111111111... in base 3.
Cosine of 60 degrees, i.e., cos(Pi/3).
-zeta(0), zeta being the Riemann function. - Stanislav Sykora, Mar 27 2014
a(0) = 5; a(n) = 0, n > 0. - Wesley Ivan Hurt, Mar 27 2014
a(n) = 5 * floor(1/(n + 1)). - Wesley Ivan Hurt, Mar 27 2014
Equals 2*A019824*A019884. - R. J. Mathar, Jan 17 2021

A157697 Decimal expansion of sqrt(2/3).

Original entry on oeis.org

8, 1, 6, 4, 9, 6, 5, 8, 0, 9, 2, 7, 7, 2, 6, 0, 3, 2, 7, 3, 2, 4, 2, 8, 0, 2, 4, 9, 0, 1, 9, 6, 3, 7, 9, 7, 3, 2, 1, 9, 8, 2, 4, 9, 3, 5, 5, 2, 2, 2, 3, 3, 7, 6, 1, 4, 4, 2, 3, 0, 8, 5, 5, 7, 5, 0, 3, 2, 0, 1, 2, 5, 8, 1, 9, 1, 0, 5, 0, 0, 8, 8, 4, 6, 6, 1, 9, 8, 1, 1, 0, 3, 4, 8, 8, 0, 0, 7, 8, 2, 7, 2, 8, 6, 4
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

Height (from a vertex to the opposite face) of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
The eccentricity of the ellipse of minimum area that is circumscribing two equal and externally tangent circles (Kotani, 1995). - Amiram Eldar, Mar 06 2022
The standard deviation of a roll of a 3-sided die. - Mohammed Yaseen, Feb 23 2023

Examples

			0.81649658092772603273242802490196379732198249355222...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (168) on page 32.

Crossrefs

Programs

Formula

Equals 1 - (1/2)/2 + (1*3)/(2*4)/2^2 - (1*3*5)/(2*4*6)/2^3 + ... [Jolley]
Equals Sum_{n>=0} (-1)^n*binomial(2n,n)/8^n = 1/A115754. Averaging this constant with sqrt(2) = A002193 = Sum_{n>=0} binomial(2n,n)/8^n yields A145439.
From Michal Paulovic, Dec 08 2022: (Start)
Equals 2 * A020763.
Has periodic continued fraction expansion [0, 1, 4; 2, 4]. (End)
Equals exp(-arctanh(1/5)). - Amiram Eldar, Jul 10 2023
Equals Product_{k>=1} (1 + (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

A237603 Decimal expansion of the inscribed sphere radius in a regular dodecahedron with unit edge.

Original entry on oeis.org

1, 1, 1, 3, 5, 1, 6, 3, 6, 4, 4, 1, 1, 6, 0, 6, 7, 3, 5, 1, 9, 4, 3, 7, 5, 0, 3, 9, 4, 8, 6, 9, 4, 9, 3, 7, 5, 8, 8, 3, 1, 5, 0, 3, 6, 9, 8, 8, 6, 4, 8, 7, 7, 7, 2, 6, 0, 1, 2, 0, 8, 0, 0, 3, 9, 9, 8, 4, 8, 9, 6, 2, 0, 5, 6, 5, 5, 6, 5, 9, 7, 5, 8, 8
Offset: 1

Views

Author

Stanislav Sykora, Feb 25 2014

Keywords

Comments

Equals phi^2/(2*xi), where phi is the golden ratio (A001622, 2*cos(Pi/5)) and xi is its associate (A182007, 2*sin(Pi/5)).

Examples

			1.1135163644116067351943750394869493758831503698864877726012080...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622, A182007, A019863, A019863, A019952, A374771 (sphere volume).
Cf. Platonic solids inradii: A020781 (tetrahedron), A020763 (octahedron), A179294 (icosahedron).

Programs

  • Mathematica
    RealDigits[ Cos[Pi/5]^2 / Sin[Pi/5], 10, 111][[1]] (* Or *)
    RealDigits[ Sqrt[5/8 + 11/(8 Sqrt[5])], 10, 111][[1]] (* Robert G. Wilson v, Feb 28 2014 *)
  • PARI
    sqrt(250+110*sqrt(5))/20

Formula

Equals A001622^2/A182007 = (cos(Pi/5))^2/sin(Pi/5) = A019863^2/A019845 = cos(Pi/5)*cotan(Pi/5) = A019863*A019952 = 1/sin(Pi/5) - sin(Pi/5) = A019845^(-1) - A019845 = sqrt(250+110*sqrt(5))/20.

A020781 Decimal expansion of 1/sqrt(24).

Original entry on oeis.org

2, 0, 4, 1, 2, 4, 1, 4, 5, 2, 3, 1, 9, 3, 1, 5, 0, 8, 1, 8, 3, 1, 0, 7, 0, 0, 6, 2, 2, 5, 4, 9, 0, 9, 4, 9, 3, 3, 0, 4, 9, 5, 6, 2, 3, 3, 8, 8, 0, 5, 5, 8, 4, 4, 0, 3, 6, 0, 5, 7, 7, 1, 3, 9, 3, 7, 5, 8, 0, 0, 3, 1, 4, 5, 4, 7, 7, 6, 2, 5, 2, 2, 1, 1, 6, 5, 4, 9, 5, 2, 7, 5, 8, 7, 2, 0, 0, 1, 9
Offset: 0

Views

Author

Keywords

Comments

Radius of the inscribed sphere (tangent to the faces) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			1/sqrt(24) = 0.20412414523193150818310700622549094933... . - _Vladimir Joseph Stephan Orlovsky_, May 30 2010
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids inradii: A020763 (octahedron), A179294 (icosahedron), A237603 (dodecahedron). - Stanislav Sykora, Feb 25 2014

Programs

Formula

Equals A010464/12. - Stefano Spezia, Jan 26 2025
Equals 1/A010480 = A020763/2 = 2*A020853 = A187110/3 = A244980/Pi. - Hugo Pfoertner, Jan 26 2025

A145439 Decimal expansion of Sum_{k>=0} binomial(4*k, 2*k)/2^(6*k).

Original entry on oeis.org

1, 1, 1, 5, 3, 5, 5, 0, 7, 1, 6, 5, 0, 4, 1, 0, 5, 4, 0, 7, 6, 7, 0, 5, 8, 3, 7, 4, 5, 5, 5, 8, 3, 0, 9, 3, 7, 9, 4, 5, 8, 2, 7, 1, 8, 4, 4, 6, 4, 5, 8, 5, 7, 2, 4, 6, 6, 0, 4, 5, 5, 2, 9, 6, 8, 7, 0, 5, 2, 6, 3, 0, 2, 1, 4, 0, 6, 0, 6, 0, 2, 3, 8, 4, 8, 5, 0, 3, 6, 7, 2, 6, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			1.11535507165041054076705837455583093794582718446458...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.49.

Crossrefs

Programs

  • Maple
    1/2*(1+1/3*3^(1/2))*2^(1/2);
  • Mathematica
    RealDigits[1/Sqrt[2] + 1/Sqrt[6], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sqrt(6) + 1/sqrt(2) \\ Michel Marcus, Jan 15 2021

Formula

Equals (1+A020760)*A010503.
Equals A020763 + A010503. - Artur Jasinski, Dec 20 2020
The minimal polynomial is 9*x^4 - 12*x^2 + 1. - Joerg Arndt, Sep 20 2023
Equals 2F1(1/4,3/4; 1/2; 1/4). - R. J. Mathar, Aug 02 2024
Equals Product_{k>=1} (1 - (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

Extensions

Typo in definition corrected by R. J. Mathar, Feb 09 2009

A385505 Decimal expansion of the volume of a biaugmented triangular prism with unit edge.

Original entry on oeis.org

9, 0, 4, 4, 1, 7, 2, 2, 2, 6, 8, 3, 2, 5, 1, 0, 0, 6, 3, 1, 5, 7, 5, 7, 8, 2, 6, 7, 7, 9, 7, 0, 0, 7, 8, 4, 5, 9, 2, 2, 5, 8, 6, 0, 5, 2, 4, 4, 9, 1, 1, 1, 8, 1, 4, 0, 6, 1, 7, 8, 3, 2, 4, 1, 9, 3, 2, 2, 7, 4, 1, 3, 7, 1, 4, 5, 6, 9, 0, 2, 2, 2, 2, 0, 4, 1, 5, 7, 2, 4
Offset: 0

Views

Author

Paolo Xausa, Jul 01 2025

Keywords

Comments

The biaugmented triangular prism is Johnson solid J_50.

Examples

			0.90441722268325100631575782677970078459225860524491...
		

Crossrefs

Cf. A384141 (surface area + 4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[59/144 + 1/Sqrt[6]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J50", "Volume"], 10, 100]]

Formula

Equals sqrt(59/144 + 1/sqrt(6)) = sqrt(59/144 + A020763).
Equals the largest root of 20736*x^4 - 16992*x^2 + 25.

A172476 a(n) = floor(n/sqrt(6)).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30
Offset: 0

Views

Author

Vincenzo Librandi, Feb 04 2010

Keywords

Crossrefs

Cf. A022840: floor(n/(sqrt(6)/6)), Beatty sequence of A020763.
Cf. A194986.

Programs

Extensions

Definition simplified by N. J. A. Sloane, Mar 11 2021

A020799 Decimal expansion of 1/sqrt(42).

Original entry on oeis.org

1, 5, 4, 3, 0, 3, 3, 4, 9, 9, 6, 2, 0, 9, 1, 9, 1, 0, 2, 6, 1, 0, 9, 4, 4, 6, 2, 7, 6, 3, 9, 9, 9, 9, 2, 0, 4, 2, 1, 5, 5, 2, 4, 8, 3, 5, 0, 1, 3, 8, 9, 2, 0, 3, 5, 6, 4, 5, 5, 6, 0, 5, 7, 0, 9, 0, 7, 0, 5, 1, 7, 5, 6, 6, 2, 9, 5, 3, 4, 3, 7, 4, 1, 4, 2, 9, 4, 3, 0, 7, 3, 0, 0, 1, 3, 3, 5, 7, 7
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(42) = 0.154303349962091910261094462763999920421552483501389203564556057090705175663... [Vladimir Joseph Stephan Orlovsky, Jun 01 2010]

Programs

Formula

Equals A020763 * A020764 . - R. J. Mathar, Nov 14 2023
Showing 1-9 of 9 results.