A293409 Decimal expansion of the minimum ripple factor for a fifth-order, reflectionless, Chebyshev filter.
2, 1, 6, 4, 0, 8, 9, 0, 8, 6, 1, 9, 7, 6, 4, 2, 5, 6, 5, 9, 1, 5, 1, 3, 2, 0, 6, 7, 3, 9, 9, 5, 6, 1, 3, 3, 1, 7, 5, 1, 4, 9, 4, 9, 4, 9, 2, 6, 7, 1, 8, 3, 9, 1, 0, 2, 8, 6, 5, 7, 6, 9, 5, 3, 1, 9, 6, 6, 9, 0, 7, 9, 0, 5, 9, 4, 3, 5, 7, 4, 8, 4, 5, 7, 3, 2, 2, 0, 1, 6, 0, 8, 9, 5, 6, 6, 4, 6, 5, 1, 8, 6, 0, 6, 8, 7, 0
Offset: 0
Examples
0.216408908619764256591513206739956133175149494926718391028657695319669...
References
- M. Morgan, Reflectionless Filters, Norwood, MA: Artech House, pp. 129-132, January 2017.
Links
Crossrefs
Programs
-
Magma
Sqrt(1/50 + 3/(50*Sqrt(5))); // G. C. Greubel, Feb 15 2018
-
Mathematica
RealDigits[Sqrt[1/50+3/(50*Sqrt[5])], 10, 100][[1]]
-
PARI
sqrt(1/50+3/(50*sqrt(5))) \\ Michel Marcus, Oct 16 2017
-
PARI
polrootsreal(3125*x^4-125*x^2-1)[2] \\ Charles R Greathouse IV, Feb 04 2025
Formula
Equals sqrt((3+sqrt(5))/(50*sqrt(5))).
Equals phi / 5^(5/4), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 28 2021
Comments