cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A156279 4 times the Lucas number A000032(n).

Original entry on oeis.org

8, 4, 12, 16, 28, 44, 72, 116, 188, 304, 492, 796, 1288, 2084, 3372, 5456, 8828, 14284, 23112, 37396, 60508, 97904, 158412, 256316, 414728, 671044, 1085772, 1756816, 2842588, 4599404, 7441992
Offset: 0

Views

Author

Paul Curtz, Feb 07 2009

Keywords

Comments

This is a second kind "autosequence" whose first kind companion is A022087. - Jean-François Alcover, Aug 20 2022

Crossrefs

Programs

Formula

a(n) = 4*A000032(n).
a(n) = a(n-1) + a(n-2).
a(n) = A014217(n+3) - A014217(n-3), with A014217(-5) = -11, A014217(-4) = 6, A014217(-3) = -4, A014217(-2) = 2, A014217(-1) = -1 extended as proposed in A153263.
G.f. 4*(-2 + x) / (-1 + x + x^2). - R. J. Mathar, Mar 11 2011
a(n) = Lucas(n+3) - Lucas(n-3), where Lucas(i) for i = 0..2 gives -4, 3, -1. - Bruno Berselli, Jul 27 2017

A230216 Number of binary strings of length n avoiding "squares" (that is, repeated blocks of the form xx) with |x| = 3.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 56, 104, 192, 352, 648, 1192, 2192, 4032, 7416, 13640, 25088, 46144, 84872, 156104, 287120, 528096, 971320, 1786536, 3285952, 6043808, 11116296, 20446056, 37606160, 69168512, 127220728, 233995400, 430384640, 791600768, 1455980808
Offset: 0

Views

Author

Nathaniel Johnston, Oct 11 2013

Keywords

Examples

			For n = 6 there are 8 strings omitted, namely 000000, 001001, ..., 111111, so a(6) = 64-8 = 56.
		

Crossrefs

Programs

  • PARI
    Vec((1 + x + x^2 + x^3 + 2*x^4 + 4*x^5) / (1 - x - x^2 - x^3) + O(x^40)) \\ Colin Barker, Aug 09 2019

Formula

a(n) = 8*A000073(n) for n >= 3.
From Colin Barker, Aug 09 2019: (Start)
G.f.: (1 + x + x^2 + x^3 + 2*x^4 + 4*x^5) / (1 - x - x^2 - x^3).
a(n) = a(n-1) + a(n-2) + a(n-3) for n>5.
(End)

A022403 a(0)=a(1)=3; thereafter a(n) = a(n-1) + a(n-2) + 1.

Original entry on oeis.org

3, 3, 7, 11, 19, 31, 51, 83, 135, 219, 355, 575, 931, 1507, 2439, 3947, 6387, 10335, 16723, 27059, 43783, 70843, 114627, 185471, 300099, 485571, 785671, 1271243, 2056915, 3328159, 5385075, 8713235, 14098311, 22811547, 36909859, 59721407, 96631267, 156352675, 252983943, 409336619, 662320563
Offset: 0

Views

Author

Keywords

Crossrefs

See A022406 for a similar sequence.

Programs

  • Magma
    [4*Fibonacci(n+1) - 1: n in [0..40]]; // G. C. Greubel, Mar 01 2018
  • Mathematica
    Table[4*Fibonacci[n+1] -1,{n, 0, 31}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011 *)
    RecurrenceTable[{a[0]==a[1]==3,a[n]==a[n-1]+a[n-2]+1},a,{n,40}] (* or *) LinearRecurrence[{2,0,-1},{3,3,7},50] (* Harvey P. Dale, Jan 10 2021 *)
  • PARI
    for(n=0, 40, print1(4*fibonacci(n+1) -1, ", ")) \\ G. C. Greubel, Mar 01 2018
    

Formula

From R. J. Mathar, Mar 11 2011: (Start)
a(n+1) - a(n) = A022087(n).
G.f.: ( 3-3*x+x^2 ) / ( (x-1)*(x^2+x-1) ). (End)
a(n) = 4*Fibonacci(n+1) - 1. - G. C. Greubel, Mar 01 2018
a(n) = (-1 + (2^(1-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5)). - Colin Barker, Mar 02 2018

Extensions

Terms a(32) onward added by G. C. Greubel, Mar 01 2018

A022406 a(0)=3, a(1)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.

Original entry on oeis.org

3, 7, 11, 19, 31, 51, 83, 135, 219, 355, 575, 931, 1507, 2439, 3947, 6387, 10335, 16723, 27059, 43783, 70843, 114627, 185471, 300099, 485571, 785671, 1271243, 2056915, 3328159, 5385075, 8713235, 14098311, 22811547, 36909859, 59721407, 96631267, 156352675
Offset: 0

Views

Author

Keywords

Comments

a(n) is the minimum number of nodes required for a full binary AVL tree of height n+1 whose root node has a balance factor of 0. - Sumukh Patel, Jun 24 2022

Crossrefs

Cf. A000045, A022087, A122195. See A022403 for a very similar sequence.

Programs

Formula

a(n) = 4*A000045(n+2) - 1. - Ron Knott, Aug 25 2006
From R. J. Mathar, May 28 2008: (Start)
a(n) = A022403(n+1).
O.g.f.: (3+x-3*x^2)/((1-x)*(1-x-x^2)).
a(n+1) - a(n) = A022087(n+1). (End)
a(n) = (2^(-n)*(-5*2^n + (10-6*sqrt(5))*(1-sqrt(5))^n + 2*(1+sqrt(5))^n*(5+3*sqrt(5)))) / 5. - Colin Barker, Mar 02 2018
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x). - Stefano Spezia, Feb 01 2025

A210209 GCD of all sums of n consecutive Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 4, 1, 3, 2, 11, 1, 8, 1, 29, 2, 21, 1, 76, 1, 55, 2, 199, 1, 144, 1, 521, 2, 377, 1, 1364, 1, 987, 2, 3571, 1, 2584, 1, 9349, 2, 6765, 1, 24476, 1, 17711, 2, 64079, 1, 46368, 1, 167761, 2, 121393, 1, 439204, 1, 317811, 2, 1149851, 1, 832040
Offset: 0

Views

Author

Alonso del Arte, Mar 18 2012

Keywords

Comments

Early on in the Posamentier & Lehmann (2007) book, the fact that the sum of any ten consecutive Fibonacci numbers is a multiple of 11 is presented as an interesting property of the Fibonacci numbers. Much later in the book a proof of this fact is given, using arithmetic modulo 11. An alternative proof could demonstrate that 11*F(n + 6) = Sum_{i=n..n+9} F(i).

Examples

			a(3) = 2 because all sums of three consecutive Fibonacci numbers are divisible by 2 (F(n) + F(n-1) + F(n-2) = 2F(n)), but since the GCD of 3 + 5 + 8 = 16 and 5 + 8 + 13 = 26 is 2, no number larger than 2 divides all sums of three consecutive Fibonacci numbers.
a(4) = 1 because the GCD of 1 + 1 + 2 + 3 = 7 and 1 + 2 + 3 + 5 = 11 is 1, so the sums of four consecutive Fibonacci numbers have no factors in common.
		

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, New York (2007) p. 33.

Crossrefs

Cf. A000045, A000071, sum of the first n Fibonacci numbers, A001175 (Pisano periods). Cf. also A229339.
Bisections give: A005013 (even part), A131534 (odd part).
Sums of m consecutive Fibonacci numbers: A055389 (m = 3, ignoring the initial 1); A000032 (m = 4, these are the Lucas numbers); A013655 (m = 5); A022087 (m = 6); A022096 (m = 7); A022379 (m = 8).

Programs

  • Maple
    a:= n-> (Matrix(7, (i, j)-> `if`(i=j-1, 1, `if`(i=7, [1, 0, -3, -1, 1, 3, 0][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 1, 4, 3, 11, 8>>, <<1, 2, 1, 1, 2, 1, 1>>))[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Mar 18 2012
  • Mathematica
    Table[GCD[Fibonacci[n + 1] - 1, Fibonacci[n]], {n, 1, 50}] (* Horst H. Manninger, Dec 19 2021 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,1,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,1,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,1,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,1,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,1,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,1; 1,0,0,0,-3,0,-1,0,1,0,3,0,0,0]^n*[0;1;1;2;1;1;4;1;3;2;11;1;8;1])[1,1] \\ Charles R Greathouse IV, Jun 20 2017

Formula

G.f.: -x*(x^12-x^11+2*x^10-x^9-2*x^8-x^7-6*x^6+x^5-2*x^4+x^3+2*x^2+x+1) / (x^14-3*x^10-x^8+x^6+3*x^4-1) = -1/(x^4+x^2-1) + (x^2+1)/(x^4-x^2-1) + (x+2)/(6*(x^2+x+1)) + (x-2)/(6*(x^2-x+1)) - 2/(3*(x+1)) - 2/(3*(x-1)). - Alois P. Heinz, Mar 18 2012
a(n) = gcd(Fibonacci(n+1)-1, Fibonacci(n)). - Horst H. Manninger, Dec 19 2021
From Aba Mbirika, Jan 21 2022: (Start)
a(n) = gcd(F(n+1)-1, F(n+2)-1).
a(n) = Lcm_{A001175(m) divides n} m.
Proofs of these formulas are given in Theorems 15 and 25 of the Guyer-Mbirika paper. (End)

Extensions

More terms from Alois P. Heinz, Mar 18 2012

A356993 a(n) = b(n - b(n - b(n - b(n)))) for n >= 2, where b(n) = A356988(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 10, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29
Offset: 2

Views

Author

Peter Bala, Sep 09 2022

Keywords

Comments

The sequence is slow, that is, for n >= 2, a(n+1) - a(n) is either 0 or 1. The sequence is unbounded.
The line graph of the sequence {a(n)} thus consists of a series of plateaus (where the value of the ordinate a(n) remains constant as n increases) joined by lines of slope 1.
The sequence of plateau heights beginning 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, ..., consists of alternating Fibonacci numbers A000045 and Lucas numbers A000032.

Crossrefs

Programs

  • Maple
    # b(n) = A356988
    b := proc(n) option remember; if n = 1 then 1 else n - b(b(n - b(b(b(n-1))))) end if; end proc:
    seq( b(n - b(n - b(n - b(n)))), n = 2..100 );

Formula

a(2) = a(3) = a(4) = a(5) = 1 and then for k >= 3 there holds
a(3*F(k) + j) = F(k) for 0 <= j <= F(k-1) (local plateau)
a(L(k+1) + j) = F(k) + j for 0 <= j <= F(k-2) (ascent to plateau of height L(k-1))
a(4*F(k) + j) = L(k-1) for 0 <= j <= F(k-1) (local plateau)
a(4*F(k) + F(k-1) + j) = L(k-1) + j for 0 <= j <= F(k-3) (ascent to next plateau of height F(k+1)).

A168674 a(n) = 2*A001610(n).

Original entry on oeis.org

0, 4, 6, 12, 20, 34, 56, 92, 150, 244, 396, 642, 1040, 1684, 2726, 4412, 7140, 11554, 18696, 30252, 48950, 79204, 128156, 207362, 335520, 542884, 878406, 1421292, 2299700, 3720994, 6020696, 9741692, 15762390, 25504084, 41266476, 66770562, 108037040
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jun 01 2010

Keywords

Comments

This sequence has a golden mean ratio limit.

Crossrefs

Programs

  • Magma
    I:=[0,4,6]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 30 2016
    
  • Mathematica
    M = {{0, 1}, {1, 1}} v[0] = {0, 1}; v[n_] := v[n] = M.v[n - 1] + {3, 2} a = Table[v[n][[1]], {n, 0, 30}]
    LinearRecurrence[{2, 0, -1}, {0, 4, 6}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
    RecurrenceTable[{a[0] == 0, a[1] == 4, a[2] == 6, a[n] == 2 a[n-1] - a[n-3]}, a, {n, 50}] (* Vincenzo Librandi, Jul 30 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,2]^n*[0;4;6])[1,1] \\ Charles R Greathouse IV, Jul 30 2016

Formula

a(n) = 2*a(n-1) - a(n-3). [Dec 03 2009]
G.f.: 2*x*(2 - x)/((1-x)*(1 -x -x^2)). [Dec 03 2009]

Extensions

Definition simplified and notation in formulas set to OEIS standards by the Assoc. Editors of the OEIS, Dec 03 2009
Previous Showing 11-17 of 17 results.