cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 81 results. Next

A385435 Row sums of A385434.

Original entry on oeis.org

1, 2, 2, 4, 4, 8, 2, 4, 4, 8, 8, 16, 4, 8, 8, 16, 13, 26, 2, 4, 4, 8, 8, 16, 4, 8, 8, 16, 16, 32, 8, 16, 16, 32, 26, 52, 4, 8, 8, 16, 13, 26, 8, 16, 16, 32, 26, 52, 13, 26, 26, 52, 40, 80, 2, 4, 4, 8, 8, 16, 4, 8, 8, 16, 16, 32, 8, 16, 16, 32, 26, 52, 4, 8, 8
Offset: 0

Views

Author

David Radcliffe, Jun 28 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Total/@Table[Mod[QBinomial[n, k, 2], 3], {n, 0,74}, {k, 0, n}]  (* James C. McMahon, Jun 29 2025 *)
  • Python
    from gmpy2 import digits
    def A385435(n): return 3*3**(s:=digits(n>>1,3)).count('2')-1<>1,3)).count('2')-1<>1 # Chai Wah Wu, Jul 10 2025

Formula

a(2n) = A051638(n), a(2n+1) = 2*A051638(n).

A136097 a(n) = A135951(n) /[(2^(n+1)-1) * 2^(n*(n-1)/2)].

Original entry on oeis.org

1, -1, 5, -93, 6477, -1733677, 1816333805, -7526310334829, 124031223014725741, -8152285307423733458541, 2140200604371078953284092525, -2245805993494514875022552272042605, 9423041917569791458584837551185555483245
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2007

Keywords

Comments

A135951 is the central terms of A135950; A135950 is the matrix inverse of A022166; A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    a(n)=local(q=2,A=matrix(2*n+1,2*n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1); A[2*n+1,n+1]/( (q^(n+1)-1)/(q-1) * q^(n*(n-1)/2) )

Formula

Conjecture: the n-th central term of the matrix inverse of the triangle of Gaussian binomial coefficients in q is divisible by [(q^(n+1)-1)/(q-1) * q^(n*(n-1)/2)] for n>=0 and integer q > 1.
a(n) = (-1)^n * A015030(n) where A015030 is 2-Catalan numbers. - Michael Somos, Jan 10 2023

A156914 Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2009

Keywords

Examples

			Square array begins as:
    1,         1,             1,                1, ...;
    2,         3,             4,                5, ...;
    6,        35,           130,              357, ...;
   20,      1395,         33880,           376805, ...;
   70,    200787,      75913222,       6221613541, ...;
  252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
  1;
  1, 2;
  1, 3,    6;
  1, 4,   35,      20;
  1, 5,  130,    1395,         70;
  1, 6,  357,   33880,     200787,           252;
  1, 7,  806,  376805,   75913222,     109221651,          924;
  1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
		

Crossrefs

Programs

  • Magma
    QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
    T:= func< n,k | QBinomial(2*n, n, k+1) >;
    [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
    
  • Mathematica
    T[n_, k_]:= QBinomial[2*n, n, k+1];
    Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
  • Sage
    def A156914(n, k): return q_binomial(2*n, n, k+1)
    flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021

Formula

T(n, k) = q-binomial(2*n, n, k+1), where q-binomial(n, k, q) = Product_{j=0..k-1} ( (1-q^(n-j))/(1-q^(j+1)) ), read by antidiagonals. - G. C. Greubel, Jun 14 2021

Extensions

Edited by G. C. Greubel, Jun 14 2021

A270883 Row sums of triangle A270882. Number of direct-sum decompositions of an n-dimensional vector space over GF(2) with any given nonzero vector in a block.

Original entry on oeis.org

1, 1, 3, 29, 961, 110657, 45148929, 66294748161, 355213310611457, 7025248750804353025, 517789725632146766102529, 143350189472963401121415823361, 150053549525040193876302690826321921, 597137918840965720442548744290289324130305, 9075744511279922489436849557317778793074029232129
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Crossrefs

Formula

Recurrence: a(n) = Sum_{k=0,...,n-1} q-binomial(n-1,k)*q^(n*(n-k))*D_q(k) where D_q(k) is given by A270881 for q = 2 and where the q-binomial for q = 2 is given by A022166. This summation formula is the q-analog of the summation formula for the Bell numbers A000110 when q = 1. - David P. Ellerman, Mar 26 2016

Extensions

Name edited by David P. Ellerman, Mar 26 2016
a(8)-a(14) from Geoffrey Critzer, May 21 2017

A277346 Maximal coefficient among squares of the polynomials in row n of the triangle of q-binomial coefficients.

Original entry on oeis.org

1, 1, 2, 3, 8, 16, 48, 119, 390, 1070, 3656, 10762, 37834, 116546, 417540, 1330923, 4836452, 15823388, 58130756, 194168612, 719541996, 2444224858, 9121965276, 31422225930, 117959864244, 411141476444, 1551101290792, 5460849893348, 20689450250926, 73474839110524
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 09 2016

Keywords

Comments

q-binomial coefficients (a.k.a. Gaussian binomial coefficients) are polynomials in q with integer coefficients.

Crossrefs

Programs

  • Mathematica
    Table[Max[Table[Max[CoefficientList[FunctionExpand[QBinomial[n, k, q]^2], q]], {k, 0, n}]], {n, 0, 30}]

Formula

Conjecture: a(n) ~ sqrt(3) * 2^(2*n+2) / (Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Jan 07 2023

A280752 Numerators of triangle related to enumeration of minimal 2-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 10, 1, 1, 2, 865, 71, 1, 1, 5, 2630, 1427, 181, 1, 1, 3, 163133, 306553, 36667, 145, 1, 1, 7, 3368938, 129115655, 46958822, 43662, 4036, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2017

Keywords

Examples

			Triangle begins:
1,
1/3,   1/3,
1/7,   1/2,      1/7,
1/15,  3/5,     10/21,         1/15,
1/31,  2/3,    865/651,       71/186,       1/31,
1/63,  5/7,   2630/651,     1427/651,     181/651,     1/63,
1/127, 3/4, 163133/11811, 306553/15748, 36667/11811, 145/762, 1/127,
...
		

Crossrefs

A280753 Denominators of triangle related to enumeration of minimal 2-covers of a labeled n-set.

Original entry on oeis.org

1, 3, 3, 7, 2, 7, 15, 5, 21, 15, 31, 3, 651, 186, 31, 63, 7, 651, 651, 651, 63, 127, 4, 11811, 15748, 11811, 762, 127, 255, 9, 66929, 602361, 602361, 10795, 32385, 255
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2017

Keywords

Examples

			Triangle begins:
1,
1/3,   1/3,
1/7,   1/2,      1/7,
1/15,  3/5,     10/21,         1/15,
1/31,  2/3,    865/651,       71/186,       1/31,
1/63,  5/7,   2630/651,     1427/651,     181/651,     1/63,
1/127, 3/4, 163133/11811, 306553/15748, 36667/11811, 145/762, 1/127,
...
		

Crossrefs

A308326 The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q = 2.

Original entry on oeis.org

1, 1, -1, 1, -4, 3, 1, -13, 33, -21, 1, -40, 270, -546, 315, 1, -121, 2010, -10080, 17955, -9765, 1, -364, 14433, -165270, 707805, -1171800, 615195, 1, -1093, 102123, -2580081, 24421005, -95765355, 151953165, -78129765, 1, -3280, 718140, -39416076, 795752370, -6790268520, 25331269320, -39221142030, 19923090075
Offset: 0

Views

Author

Werner Schulte, May 23 2019

Keywords

Comments

The formulas are given for the general case depending on some fixed integer q. The terms are valid if q = 2.
Special cases: T(0; n,k) = (-1)^k * binomial(n,k) for 0 <= k <= n and T(1; n,k) = A163626(n,k) for 0 <= k <= n.

Examples

			If q = 2 the triangle T(2; n,k) starts:
n\k:  0     1      2        3        4         5         6         7
====================================================================
  0:  1
  1:  1    -1
  2:  1    -4      3
  3:  1   -13     33      -21
  4:  1   -40    270     -546      315
  5:  1  -121   2010   -10080    17955     -9765
  6:  1  -364  14433  -165270   707805  -1171800    615195
  7:  1 -1093 102123 -2580081 24421005 -95765355 151953165 -78129765
etc.
		

Crossrefs

Programs

  • PARI
    q = 2; {T(n,k) = if(k<0 || k>n, 0, if(k==0, 1, if(q==1, (k+1) * T(n-1,k) - k * T(n-1,k-1), ((q^(k+1) - 1)/(q - 1)) * T(n-1,k) - ((q^k - 1)/(q - 1)) * T(n-1,k-1))))};
    for(n=0, 9, for(k=0, n, print1(T(n,k), ", "))) \\ Werner Schulte, May 26 2019

Formula

T(q; n,k) = [k+1]_q * T(q; n-1,k) - [k]_q * T(q; n-1,k-1) for 1 <= k <= n with initial values T(q; n,0) = 1 for n >= 0 and T(q; i,j) = 0 if i < j or j < 0 where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,k) = (1/q^binomial(k+1,2)) * (Sum_{j=0..k} (-1)^j * [k,j]_q * q^binomial(k-j,2) * ([j+1]_q)^n) for 0 <= k <= n and q not equal zero where [m,i]_q are the q-binomials (here A022166 for q = 2) and [i]_q = (q^i - 1)/(q - 1) for i >= 0.
Sum_{k=0..n} T(q; n,k) = A000007(n) for n >= 0.
T(q; n,k)/T(q; k,k) give the q-analogs of the Stirling numbers of the second kind (for q = 2 see A139382, but offset 1).
T(q; n,n) = (-1)^n * Product_{j=1..n} [j]_q for n>=0 with empty product 1 (case n = 0) where [i]_q = (q^i - 1)/(q - 1) for i >= 0.
T(q; n,1) = -[n,1]_(q+1) for n >= 1 where [m,i]_q are the q-binomials (here A022166 for q = 2 and A022167 for q = 3).
G.f. of column k: col(q; t,k) = Sum_{n>=k} T(q; n,k)*t^n = ((-t)^k/(1-t)) * Product_{j=1..k} ([i]_q/(1-[i+1]_q*t)) for k>=0 with empty product 1 (case k=0) and [i]_q = i if q = 1 otherwise (q^i-1)/(q-1) for i>=0.

A316554 Triangle read by rows: number of Boolean functions in n variables, of algebraic degree d, with the property that at least one of their discrete derivatives has degree strictly smaller than d-1 (d-1 is maximum possible degree).

Original entry on oeis.org

0, 3, 0, 7, 7, 0, 15, 35, 15, 0, 31, 1023, 155, 31, 0, 63, 18879, 56079, 651, 63, 0, 127, 2097151, 128373759, 4090543, 2667, 127, 0, 255, 155553791, 8739796397055, 8761037088127, 534190575, 10795, 255, 0, 511, 68719476735, 36818452141739261951, 603282315201970099093503, 36821430371387013247, 137165789295, 43435, 511, 0
Offset: 1

Views

Author

Ana Salagean, Jul 06 2018

Keywords

Comments

Boolean functions in n variables (n bits input, one bit output) are viewed in their algebraic normal form (ANF), i.e., as polynomial functions over F_2 (the finite field of integers modulo 2), of degree at most one in each variable.
The functions are counted up to equivalence: two functions are defined as equivalent if they both have the same degree d and their difference is a polynomial function of degree d-1.
The discrete derivative of f in direction (a_1,...,a_n) is defined as f(x_1+a_1,...,x_n+a_n) - f(x_1,...,x_n); if f has degree d, its derivatives have degree d-1 or less.
We count the functions which have at least one derivative of degree strictly less than d-1.
This is a triangular array, indexed by (n,d), with d=1..n. It is written row by row, starting with n=1.
Note that in the Formula section we denoted by qbinomial(n,k,q) the Gaussian binomial coefficients, or q-binomial coefficients; we use the values for q=2, which are sequence A022166. Both formulae were proven in the reference.

Examples

			Table begins:
   0,
   3,     0,
   7,     7,     0,
  15,    35,    15,   0,
  31,  1023,   155,  31,  0,
  63, 18879, 56079, 651, 63, 0,
  ...
		

Crossrefs

Cf. A022166.

Programs

  • Mathematica
    Block[{f}, f[n_, k_, m_] := Product[(1 - m^(n - i))/(1 - m^(i + 1)), {i, 0, k - 1}]; Table[Sum[(-1)^(i - 1)*2^(i (i - 1)/2)*f[n, i, 2] (2^Binomial[n - i, k] - 1), {i, n - k}], {n, 9}, {k, n}]] // Flatten (* Michael De Vlieger, Jun 16 2020 *)
  • PARI
    qb(n, k, m) = prod(i=0, k-1, (1 - m^(n-i))/(1-m^(i+1)));
    T(n, k) = sum(i=1, n-k, (-1)^(i-1)*2^(i*(i-1)/2)*qb(n,i,2)*(2^binomial(n-i,k)-1)); \\ Michel Marcus, Jul 22 2018

Formula

T(n,d) = Sum_{i=1..n-d} (-1)^(i-1) 2^(i(i-1)/2) qbinomial(n,i,2) (2^binomial(n-i,d)-1).
Recurrence relation on n, for each fixed d: T(n,d) = Sum_{i=1..(n-d)} qbinomial(n,i,2) (2^binomial(n-i,d) - 1 - T(n-i,d)); T(d,d) = 0.

A338621 Triangle read by rows: A(n, k) is the number of partitions of n with "aft" value k (see comments).

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 3, 2, 2, 4, 3, 2, 2, 4, 5, 2, 2, 2, 4, 6, 7, 1, 2, 2, 4, 6, 9, 6, 1, 2, 2, 4, 6, 10, 11, 7, 2, 2, 4, 6, 10, 13, 14, 5, 2, 2, 4, 6, 10, 14, 19, 15, 5, 2, 2, 4, 6, 10, 14, 21, 22, 17, 3, 2, 2, 4, 6, 10, 14, 22, 27, 29, 17, 2, 2, 2, 4, 6, 10, 14, 22, 29, 36, 33, 17
Offset: 0

Views

Author

Joshua Swanson, Nov 04 2020

Keywords

Comments

The "aft" of an integer partition is the number of cells minus the larger of the number of parts or the largest part. For example, aft(4, 2, 2) = 8-4 = 4 = aft(3, 3, 1, 1).
Columns stabilize to twice the partition numbers: A(n, k) = 2p(n) = A139582(n) if n > 2k.
Row sums are partition numbers A000041.
Maximum value of k in row n is n - ceiling(sqrt(n)) = (n-1) - floor(sqrt(n-1)) = A028391(n-1).

Examples

			A(6, 2) = 4 since there are four partitions with 6 cells and aft 2, namely (4, 2), (2, 2, 1, 1), (4, 1, 1), (3, 1, 1, 1).
Triangle starts:
  1;
  1;
  2;
  2, 1;
  2, 2, 1;
  2, 2, 3;
  2, 2, 4, 3;
  2, 2, 4, 5,  2;
  2, 2, 4, 6,  7,  1;
  2, 2, 4, 6,  9,  6,  1;
  2, 2, 4, 6, 10, 11,  7;
  2, 2, 4, 6, 10, 13, 14,  5;
  2, 2, 4, 6, 10, 14, 19, 15,  5;
  2, 2, 4, 6, 10, 14, 21, 22, 17,  3;
  2, 2, 4, 6, 10, 14, 22, 27, 29, 17,  2;
  2, 2, 4, 6, 10, 14, 22, 29, 36, 33, 17,  1;
  2, 2, 4, 6, 10, 14, 22, 30, 41, 45, 39, 15,  1;
  2, 2, 4, 6, 10, 14, 22, 30, 43, 52, 57, 41, 14;
  2, 2, 4, 6, 10, 14, 22, 30, 44, 57, 69, 67, 47, 11;
  2, 2, 4, 6, 10, 14, 22, 30, 44, 59, 76, 85, 81, 46, 9; ...
		

References

  • S. C. Billey, M. Konvalinka, and J. P. Swanson, Asymptotic normality of the major index on standard tableaux, Adv. in Appl. Math. 113 (2020).

Crossrefs

Programs

  • Mathematica
    CoefficientList[
    SeriesCoefficient[
      1 + Sum[If[r == 0, 1, 2] q^(r + 1) Sum[
          q^(2 s) t^s QBinomial[2 s + r, s, q t], {s, 0, 30}], {r, 0,
         30}], {q, 0, 20}], t]
  • PARI
    Row(n)={if(n==0, [1], my(v=vector(n)); forpart(p=n, v[1+n-max(#p, p[#p])]++); Vecrev(Polrev(v)))}
    { for(n=1, 15, print(Row(n))) } \\ Andrew Howroyd, Nov 04 2020

Formula

G.f.: Sum_{lambda} t^aft(lambda) * q^|lambda| = 1 + Sum_{r >= 0} c_r * q^(r+1) * Sum_{s >= 0} q^(2*s) * t^s * [2*s + r, s]_(q*t) where c_0 = 1, c_r = 2 for r >= 1, and [a, b]_q is a Gaussian binomial coefficient (see A022166).
Previous Showing 61-70 of 81 results. Next