cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A005226 Number of atomic species of degree n; also number of connected permutation groups of degree n.

Original entry on oeis.org

0, 1, 1, 2, 6, 6, 27, 20, 130, 124, 598, 641, 4850, 4772, 35625, 46074, 389839, 487408, 4617554
Offset: 0

Views

Author

Keywords

Comments

An atomic species is one that is not the product of smaller species. - Christian G. Bower, Feb 23 2006
A permutation group is connected if it is not the direct product of smaller permutation groups. - Christian G. Bower, Feb 23 2006

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
  • Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005227. Unlabeled version of A116655.

Programs

  • Mathematica
    A000638 = Cases[Import["https://oeis.org/A000638/b000638.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    {0} ~Join~ EulerInvTransform[A000638 // Rest] (* Jean-François Alcover, Dec 03 2019, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A000638. Define b(n), c(n), d(): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=A000638(k), k>0. d(k)=a(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006

Extensions

a(11) corrected and a(12) added by Christian G. Bower, Feb 23 2006 based on Goetz Pfeiffer's edit to A000638.
Could be extended to a(18) now using the new terms for A000637. - N. J. A. Sloane, Jul 30 2010
a(13) from Liam Naughton, Nov 23 2012
a(14)-a(18) from the inverse Euler transform of A000637. - R. J. Mathar, Mar 03 2015

A053465 Number of connected 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 2, 7, 53, 712, 24576, 2275616, 589543159, 420188096140, 819411181635025, 4381819315336997184, 64583749250393921183423, 2638507778912832094660037006, 300397569392490080058575760090548, 95776592061550107555640978862165082446
Offset: 0

Views

Author

Vladeta Jovovic, Jan 13 2000

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Also the number of connected signed graphs on n unlabeled nodes. - Andrew Howroyd, Sep 25 2018

Crossrefs

Programs

  • Mathematica
    A004102 = Import["https://oeis.org/A004102/b004102.txt", "Table"][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    Join[{1}, EulerInvTransform[A004102 // Rest]] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A004102. - Andrew Howroyd, Sep 25 2018

Extensions

a(0)=1 prepended and terms a(15) and beyond from Andrew Howroyd, Sep 25 2018

A022564 Number of 2-connected non-Hamiltonian claw-free graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 84, 408
Offset: 1

Views

Author

Keywords

Crossrefs

A126757 Number of n-node connected graphs with no cycles of length less than 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 47, 137, 464, 1793, 8167, 43645, 275480, 2045279, 17772647, 179593823, 2098423758, 28215583324, 434936005284, 7662164738118
Offset: 1

Views

Author

N. J. A. Sloane, Feb 18 2007

Keywords

Crossrefs

Programs

Formula

This is the inverse Euler transform of A006787. - Conjectured by Vladeta Jovovic, Jun 16 2008, proved by Max Alekseyev and Brendan McKay, Jun 17 2008

Extensions

Definition corrected by Max Alekseyev and Brendan McKay, Jun 17 2008
a(20)-a(21) using Brendan McKay's extension to A006787 by Alois P. Heinz, Mar 11 2018

A001928 Number of connected topologies with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 94, 512, 3485, 29515, 314474, 4255727, 73831813, 1653083021, 47941962135, 1803010446411, 87882300251730, 5543501326580737
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.

Crossrefs

Programs

Formula

Inverse Euler transform of A001930. - Vladeta Jovovic, Jan 06 2006

Extensions

More terms from Vladeta Jovovic, Jan 06 2006

A086991 Numbers of claw-free simple graphs (not necessarily connected) on n nodes.

Original entry on oeis.org

1, 2, 4, 10, 26, 85, 302, 1285, 6170, 34294, 227417, 2001617, 26098641, 520051389, 15041205304
Offset: 1

Views

Author

Eric W. Weisstein, Jul 28 2003

Keywords

Crossrefs

Cf. A022562 (inv. Euler transf.).

Extensions

a(10) from Michael Codish, Dec 01 2015
a(11)-a(15) added using tinygraph by Falk Hüffner, Jan 12 2016

A349904 Inverse Euler transform of the tribonacci numbers A000073.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 10, 18, 31, 56, 96, 172, 299, 530, 929, 1646, 2893, 5126, 9044, 16028, 28362, 50328, 89249, 158598, 281830, 501538, 892857, 1591282, 2837467, 5064334, 9044023, 16163946, 28906213, 51729844, 92628401, 165967884, 297541263, 533731692, 957921314
Offset: 1

Views

Author

Peter Luschny, Dec 05 2021

Keywords

Crossrefs

Column k=2 of A349802.
Cf. A000073, A057597 (tribonacci numbers for n <= 0), A006206 and A060280.

Programs

  • Maple
    read transforms;  # https://oeis.org/transforms.txt
    arow := len -> EULERi([seq(A000073(n), n = 0..len)]): arow(39);
    # second Maple program:
    t:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; t(n-1)-b(n, n-1) end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Dec 05 2021
  • Mathematica
    (* EulerInvTransform is defined in A022562. *)
    EulerInvTransform[LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 40]]
  • PARI
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    seq(n) = InvEulerT(Vec(x^2/(1 - x - x^2 - x^3) + O(x^n), -n)) \\ Andrew Howroyd, Dec 05 2021
  • Python
    # After the Maple program of Alois P. Heinz.
    from functools import cache
    from math import comb
    def binomial(n, k):
        if n == -1: return 1
        return comb(n, k)
    @cache
    def A000073(n):
        if n <= 1: return 0
        if n == 2: return 1
        return A000073(n-1) + A000073(n-2) + A000073(n-3)
    @cache
    def b(n, i):
        if n == 0: return 1
        if i <  1: return 0
        return sum(binomial(a(i) + j - 1, j) *
                   b(n - i * j, i - 1) for j in range(1 + n // i))
    @cache
    def a(n): return (A000073(n - 1) - b(n, n - 1))
    print([a(n) for n in range(1, 41)])
    
  • SageMath
    def euler_invtrans(A) :
        L = []; M = []
        for i in range(len(A)) :
            s = (i+1)*A[i] - sum(L[j-1]*A[i-j] for j in (1..i))
            L.append(s)
            s = sum(moebius((i+1)/d)*L[d-1] for d in divisors(i+1))
            M.append(s/(i + 1))
        return M
    @cached_function
    def a(n): return a(n-1) + a(n-2) + a(n-3) if n > 2 else [0,0,1][n]
    print(euler_invtrans([a(n) for n in range(40)]))
    

A022563 Number of 2-connected claw-free graphs on n nodes.

Original entry on oeis.org

0, 0, 1, 3, 8, 32, 126, 619, 3332, 20910, 157721, 1590330, 23074092, 487448150, 14466253437, 585505737038
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(12) corrected using tinygraph by Falk Hüffner, Jan 18 2016
a(13)-a(16) from Brendan McKay, Jun 13 2021

A030268 Number of nonisomorphic connected partial lattices.

Original entry on oeis.org

1, 1, 1, 3, 9, 35, 153, 791, 4597, 29988, 215804, 1697291, 14457059, 132392971, 1295346365, 13468653637, 148142236784, 1716782858995, 20889118889021
Offset: 0

Views

Author

Christian G. Bower, revised Dec 28 2000

Keywords

Comments

A partial lattice is a poset where every pair of points has a unique least upper (greatest lower) bound or has no upper (lower) bound.

Programs

Formula

Inverse Euler transform of A006966(n-2) (lattices).

Extensions

a(17) (from A006966) from Jean-François Alcover, May 10 2019
a(18) (using A006966) from Alois P. Heinz, May 10 2019

A046745 Number of connected graphs with <= n edges.

Original entry on oeis.org

1, 2, 5, 10, 22, 52, 131, 358, 1068, 3390, 11461, 40964, 153786, 603927, 2471798, 10509270, 46296937, 210848414, 990794383, 4795761825, 23875074600, 122086530809, 640484152252, 3443478138871, 18954259427121, 106719731914780, 614115134054991, 3609008134177109
Offset: 1

Views

Author

Keywords

Crossrefs

Partial sums of A002905.

Programs

Extensions

More terms from Vladeta Jovovic, Apr 10 2001
More terms from Vladeta Jovovic, Jul 05 2003
Terms a(25) and beyond added by Andrew Howroyd, May 06 2021
Previous Showing 11-20 of 28 results. Next