cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A022597 Expansion of Product_{m >= 1} (1 + q^m)^(-2).

Original entry on oeis.org

1, -2, 1, -2, 4, -4, 5, -6, 9, -12, 13, -16, 21, -26, 29, -36, 46, -54, 62, -74, 90, -106, 122, -142, 171, -200, 227, -264, 311, -358, 408, -470, 545, -626, 709, -810, 933, -1062, 1198, -1362, 1555, -1760, 1980, -2238, 2536, -2858, 3205, -3602, 4063, -4560, 5092, -5704, 6400, -7150, 7966
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
McKay-Thompson series of class 24J for the Monster group.

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 4*x^5 + 5*x^6 - 6*x^7 + 9*x^8 + ...
T24J = 1/q - 2*q^11 + q^23 - 2*q^35 + 4*q^47 - 4*q^59 + 5*q^71 - 6*q^83 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

Crossrefs

Cf. A089814 (expansion of Product_{k>=1}(1-q^(10k-5))^2).
Column k=2 of A286352.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}]^-2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^2, n))}; /* Michael Somos, Sep 10 2005 */

Formula

Expansion of q^(1/12) * (eta(q) / eta(q^2))^2 in powers of q.
Euler transform of period 2 sequence [ -2, 0, ...]. - Michael Somos, Sep 10 2005
Expansion of chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A022567.
G.f.: Product_{k>0} (1 + x^k)^-2.
Convolution square of A081362. Convolution inverse of A022567.
a(n) = (-1)^n * A073252(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A261616 Expansion of Product_{k>=0} 1/(1 - x^(3*k+1))^2.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 13, 18, 26, 34, 44, 58, 76, 96, 123, 156, 196, 244, 304, 374, 461, 566, 690, 836, 1015, 1224, 1470, 1762, 2110, 2512, 2987, 3542, 4191, 4944, 5825, 6842, 8025, 9392, 10971, 12788, 14891, 17300, 20068, 23242, 26883, 31034, 35787, 41204
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Comments

Self-convolution of A035382.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} 1/(1 - x^(a*k+b))^2, then a(n) ~ Gamma(b/a)^2 * a^(b/a - 3/4) * exp(2*Pi*sqrt(n/(3*a))) * Pi^(2*b/a - 2) / (4 * 3^(b/a - 1/4) * n^(b/a + 1/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(3*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(n)/3) * Gamma(1/3)^2 / (4 * sqrt(3) * Pi^(4/3) * n^(7/12)).

A263002 Expansion of (f(-x^5) / f(-x))^2 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 5, 10, 20, 34, 61, 100, 165, 260, 408, 620, 940, 1390, 2045, 2960, 4257, 6040, 8525, 11900, 16522, 22738, 31130, 42300, 57210, 76872, 102834, 136800, 181230, 238900, 313725, 410160, 534330, 693330, 896655, 1155420, 1484274, 1900420, 2426215, 3088100
Offset: 0

Views

Author

Michael Somos, Oct 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of 5-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 34*x^5 + 61*x^6 + 100*x^7 + ...
G.f. = q + 2*q^4 + 5*q^7 + 10*q^10 + 20*q^13 + 34*q^16 + 61*q^19 + 100*q^22 + ...
		

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Cf. A058511.
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
    S := L -> seriestolist(series(LRBP(L,80),q,60));
    S(5); # N. J. A. Sloane, Oct 20 2019
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^2, n))};

Formula

Expansion of q^(-1/3) * (eta(q^5) / eta(q))^2 in powers of q.
Euler transform of period 5 sequence [ 2, 2, 2, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A058511.
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u - v^2) * (v - u^2) - 4*u^2*v^2.
Convolution inverse is A058511.
a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 3^(1/4) * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
See Maple code for a simple g.f. - N. J. A. Sloane, Oct 20 2019

A285928 Expansion of (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^5 in powers of x.

Original entry on oeis.org

1, 5, 20, 65, 190, 501, 1240, 2890, 6440, 13775, 28502, 57205, 111880, 213670, 399620, 733128, 1321850, 2345340, 4100700, 7072520, 12045005, 20272465, 33746060, 55595635, 90706390, 146638756, 235016940, 373580735, 589238640, 922537655, 1434232510, 2214817165
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2017

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} ((1 - x^(m*k)) / (1 - x^k))^m, then a(n, m) ~ exp(Pi*sqrt(2*(m-1)*n/3)) * (m-1)^(1/4) / (2^(5/4) * 3^(1/4) * m^(m/2) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017

Crossrefs

(Product_{k>0} (1 - x^(m*k)) / (1 - x^k))^m: A022567 (m=2), A285927 (m=3), A093160 (m=4), this sequence (m=5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 - x^(5*k)) / (1 - x^k))^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)

Formula

a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A116073(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * 5^(5/2) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017

A358369 Euler transform of 2^floor(n/2), (A016116).

Original entry on oeis.org

1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636
Offset: 0

Views

Author

Peter Luschny, Nov 17 2022

Keywords

Crossrefs

Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include A000009, A000041, A000712, A001970, A002513, A010054, A015128, A022567, A034691, A111317, A111335, A117410, A156224, A166861, A200544, A261031, A261329, A358449.

Programs

  • Maple
    BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u;
    u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi;
    b*u(n - 1) + c*u(n - 2) end; u end:
    EulerTransform := proc(a) local b;
    b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d),
    d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end:
    a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36);
  • Python
    from typing import Callable
    from functools import cache
    from sympy import divisors
    def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable:
        @cache
        def u(n: int) -> int:
            if n < 2:
                return [u0, u1][n]
            return b * u(n - 1) + c * u(n - 2)
        return u
    def EulerTransform(a: Callable) -> Callable:
        @cache
        def b(n: int) -> int:
            if n == 0:
                return 1
            s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j)
                for j in range(1, n + 1))
            return s // n
        return b
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
    

A261615 Expansion of Product_{k>=0} (1 + x^(3*k+1))^2.

Original entry on oeis.org

1, 2, 1, 0, 2, 4, 2, 2, 5, 4, 3, 8, 10, 6, 9, 14, 11, 14, 22, 18, 17, 30, 32, 28, 41, 46, 39, 54, 68, 60, 73, 94, 85, 96, 131, 128, 130, 170, 175, 176, 229, 246, 237, 294, 330, 320, 386, 446, 430, 492, 582, 578, 642, 762, 763, 818, 977, 1008, 1061, 1254, 1311
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Comments

Self-convolution of A261612.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k+b))^2, then a(n) ~ exp(Pi*sqrt(2*n/(3*a))) / (2^(2*b/a + 1/4) * 3^(1/4) * a^(1/4) * n^(3/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n)/3) / (2^(11/12) * sqrt(3) * n^(3/4)).

A285927 Expansion of (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 19, 42, 81, 155, 276, 486, 821, 1368, 2214, 3541, 5544, 8586, 13082, 19740, 29403, 43414, 63423, 91935, 132075, 188418, 266733, 375232, 524331, 728514, 1006216, 1382604, 1889739, 2570719, 3480420, 4691682, 6297102, 8418252, 11209347, 14870970
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2017

Keywords

Crossrefs

(Product_{k>0} (1 - x^(m*k)) / (1 - x^k))^m: A022567 (m=2), this sequence (m=3), A093160 (m=4), A285928 (m=5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 - x^(3*k)) / (1 - x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)

Formula

a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A046913(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(7/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017

A328547 Number of 3-regular bipartitions of n.

Original entry on oeis.org

1, 2, 5, 8, 16, 26, 44, 68, 108, 162, 245, 356, 521, 740, 1053, 1468, 2045, 2804, 3836, 5184, 6988, 9326, 12409, 16376, 21546, 28154, 36674, 47492, 61317, 78764, 100880, 128628, 163553, 207134, 261630, 329288, 413395, 517316, 645803, 803844, 998282
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Cf. A000726.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
    S := L -> seriestolist(series(LRBP(L,80),q,60));
    S(3);
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + x^j + x^(2*j), {j, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2024 *)

Formula

a(n) ~ exp(Pi*sqrt(8*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2024

A328548 Number of 6-regular bipartitions of n.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 63, 106, 175, 280, 441, 680, 1034, 1548, 2290, 3346, 4840, 6930, 9837, 13844, 19337, 26810, 36925, 50530, 68741, 92984, 125113, 167490, 223155, 295960, 390825, 513954, 673214, 878480, 1142190, 1479892, 1911051, 2459896, 3156602
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Cf. A219601.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
    S := L -> seriestolist(series(LRBP(L,80),q,60));
    S(6);
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k), {k, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2024 *)

Formula

a(n) ~ 5^(1/4) * exp(Pi*sqrt(10*n)/3) / (2^(9/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2024

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Previous Showing 11-20 of 38 results. Next