cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 81 results. Next

A218736 a(n) = (33^n - 1)/32.

Original entry on oeis.org

0, 1, 34, 1123, 37060, 1222981, 40358374, 1331826343, 43950269320, 1450358887561, 47861843289514, 1579440828553963, 52121547342280780, 1720011062295265741, 56760365055743769454, 1873092046839544391983, 61812037545704964935440, 2039797239008263842869521
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 33 (A009977).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 33*x)).
a(n) = 34*a(n-1) - 33*a(n-2).
a(n) = floor(33^n/32). (End)
E.g.f.: exp(x)*(exp(32*x) - 1)/32. - Stefano Spezia, Mar 24 2023

A022171 Triangle of Gaussian binomial coefficients [ n,k ] for q = 7.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 57, 57, 1, 1, 400, 2850, 400, 1, 1, 2801, 140050, 140050, 2801, 1, 1, 19608, 6865251, 48177200, 6865251, 19608, 1, 1, 137257, 336416907, 16531644851, 16531644851, 336416907, 137257, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1,      1;
  1,      8,         1;
  1,     57,        57,           1;
  1,    400,      2850,         400,           1;
  1,   2801,    140050,      140050,        2801,         1;
  1,  19608,   6865251,    48177200,     6865251,     19608,      1;
  1, 137257, 336416907, 16531644851, 16531644851, 336416907, 137257, 1;
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

Crossrefs

Cf. A023000 (k=1), A022231 (k=2)

Programs

  • Maple
    A027875 := proc(n)
        mul(7^i-1,i=1..n) ;
    end proc:
    A022171 := proc(n,m)
        A027875(n)/A027875(m)/A027875(n-m) ;
    end proc: # R. J. Mathar, Jul 19 2017
  • Mathematica
    p[n_]:=Product[7^i - 1, {i, 1, n}]; t[n_, k_]:=p[n]/(p[k]*p[n - k]); Table[t[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Aug 13 2016 *)
    Table[QBinomial[n,k,7], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 7; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten  (* G. C. Greubel, May 27 2018 *)
  • PARI
    {q=7; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018

Formula

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 7^j - 1. - Seiichi Manyama, May 09 2025

A055129 Repunits in different bases: table by antidiagonals of numbers written in base k as a string of n 1's.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 13, 15, 5, 1, 6, 21, 40, 31, 6, 1, 7, 31, 85, 121, 63, 7, 1, 8, 43, 156, 341, 364, 127, 8, 1, 9, 57, 259, 781, 1365, 1093, 255, 9, 1, 10, 73, 400, 1555, 3906, 5461, 3280, 511, 10, 1, 11, 91, 585, 2801, 9331, 19531, 21845, 9841, 1023, 11
Offset: 1

Views

Author

Henry Bottomley, Jun 14 2000

Keywords

Examples

			T(3,5)=31 because 111 base 5 represents 25+5+1=31.
      1       1       1       1       1       1       1
      2       3       4       5       6       7       8
      3       7      13      21      31      43      57
      4      15      40      85     156     259     400
      5      31     121     341     781    1555    2801
      6      63     364    1365    3906    9331   19608
      7     127    1093    5461   19531   55987  137257
Starting with the second column, the q-th column list the numbers that are written as 11...1 in base q. - _John Keith_, Apr 12 2021
		

Crossrefs

Rows include A000012, A000027, A002061, A053698, A053699, A053700. Columns (see recurrence) include A000027, A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002275, A016123, A016125. Diagonals include A023037, A031973. Numbers in the table (apart from the first column and first two rows) are ordered in A053696.

Programs

  • Maple
    A055129 := proc(n,k)
        add(k^j,j=0..n-1) ;
    end proc: # R. J. Mathar, Dec 09 2015
  • Mathematica
    Table[FromDigits[ConstantArray[1, #], k] &[n - k + 1], {n, 11}, {k, n, 1, -1}] // Flatten (* or *)
    Table[If[k == 1, n, (k^# - 1)/(k - 1) &[n - k + 1]], {n, 11}, {k, n, 1, -1}] // Flatten (* Michael De Vlieger, Dec 11 2016 *)

Formula

T(n, k) = (k^n-1)/(k-1) [with T(n, 1) = n] = T(n-1, k)+k^(n-1) = (k+1)*T(n-1, k)-k*T(n-2, k) [with T(0, k) = 0 and T(1, k) = 1].
From Werner Schulte, Aug 29 2021 and Sep 18 2021: (Start)
T(n,k) = 1 + k * T(n-1,k) for k > 0 and n > 1.
Sum_{m=2..n} T(m-1,k)/Product_{i=2..m} T(i,k) = (1 - 1/Product_{i=2..n} T(i,k))/k for k > 0 and n > 1.
Sum_{n > 1} T(n-1,k)/Product_{i=2..n} T(i,k) = 1/k for k > 0.
Sum_{i=1..n} k^(i-1) / (T(i,k) * T(i+1,k)) = T(n,k) / T(n+1,k) for k > 0 and n > 0. (End)

A210852 Approximations up to 7^n for one of the three 7-adic integers (-1)^(1/3).

Original entry on oeis.org

0, 3, 31, 325, 1354, 1354, 34968, 740862, 2387948, 25447152, 146507973, 1276408969, 9185715941, 78392151946, 272170172760, 950393245609, 10445516265495, 43678446835096, 974200502783924, 10744682090246618, 22143577275619761
Offset: 0

Views

Author

Wolfdieter Lang, May 02 2012

Keywords

Comments

The numbers are computed from the recurrence given below in the formula field. This recurrence follows from the formula a(n) = 3^(7^(n-1)) (mod 7^n), n >= 1, which satisfies a(n)^3 + 1 == 0 (mod 7^n), n >= 1. a(0) = 0 satisfies this congruence as well. The proof can be done by showing that each term in the binomial expansion of (3^(7^(n-1)))^3 +1 = (28 -1)^(7^(n-1)) + 1 has a factor 7^n.
a(n) == 3 (mod 7), n >= 1. This follows from the formula given above, and 3^(7^(n-1)) == 3 (mod 7), n >= 1 (proof by induction).
The digit t(n), n >= 0, multiplying 7^n in the 7-adic integer (-1)^(1/3) corresponding to this sequence is obtained from the (unique) solution of the linear congruence 3*a(n)^2*t(n) + b(n) == 0 (mod 7), n >= 1, with b(n):= (a(n)^3+1)/7^n = A210853(n). t(0):=3, one of the three solutions of X^3 + 1 == 0 (mod 7). For these digits see A212152. The 7-adic number is, read from right to left, ...3143214516604202226653431432053116412125443426203643 =: u.
a(n) is obtained from reading u in base 7, and adding the first n terms.
One can show directly that a(n) = 7^n + 1 - y(n), n >= 1, with y(n) = A212153(n) and z(n) = 7^n - 1 = 6*A023000(n), n >= 0.
Iff a(n+1) = a(n) then t(n) = A212152(n) = 0.
See the Nagell reference given in A210848 for theorems 50 and 52 on p. 87, and formula (6) on page 86, adapted to this case. Because X^3 + 1 = 0 (mod 7) has the three simple roots 3, 5 and 6, one has for X(n)^3 + 1 == 0 (mod 7^n) exactly three solutions for each n >= 1, which can be chosen as a(n) == 3 (mod 7), y(n) == 5 (mod 7) and z(n) == 6 (mod 7) == -1 (mod 7). The y- and z- sequences are given in A212153 and 6*A023000, respectively.
For n > 0, a(n) - 1 (== a(n)^2 (mod 7^n)) and 7^n - a(n) (== a(n)^4 (mod 7^n)) are the two primitive cubic roots of unity in Z/(7^n Z). - Álvar Ibeas, Feb 20 2017
From Jianing Song, Aug 26 2022: (Start)
a(n) is the solution to x^2 - x + 1 == 0 (mod 7^n) that is congruent to 3 modulo 7 (if n>0).
A212153(n) is the multiplicative inverse of a(n) modulo 7^n. (End)

Examples

			a(3) == 31^7 (mod 7^3) == 27512614111 (mod 343) = 325.
a(3) == 3^49 (mod 7^3) = 325.
a(3) = 31 + 6*7^2 = 325.
a(3) = 3*7^0 + 4*7^1 + 6*7^2 = 325.
a(3) = 7^3 +1 - 19 = 325.
a(5) = a(4) = 1354 because A212152(4) = 0.
		

Crossrefs

Cf. A212152 (digits of (-1)^(1/3)), A212153 (approximations of another cube root of -1), 6*A023000 (approximations of -1).
Cf. A048898, A048899 (approximations of the 5-adic integers sqrt(-1)); A319097, A319098, A319199 (approximations of the 7-adic integers 6^(1/3)).

Programs

  • Maple
    a:=proc(n) option remember: if n=0 then 0 elif n=1 then 3
    else modp(a(n-1)^7, 7^n) fi end proc: [seq(a(n),n=0..30)];
  • Mathematica
    a[n_] := a[n] = Which[n == 0, 0, n == 1, 3, True, Mod[a[n-1]^7, 7^n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2014, after Maple *)
  • PARI
    a(n) = lift((1-sqrt(-3+O(7^n)))/2) \\ Jianing Song, Aug 26 2022

Formula

Recurrence: a(n) = a(n-1)^7 (mod 7^n), n >= 2, a(0)=0, a(1)=3.
a(n) == 3^(7^(n-1)) (mod 7^n) == 3 (mod 7), n >= 1.
a(n+1) = a(n) + A212152(n)*7^n, n >= 1.
a(n+1) = Sum_{k=0..n} A212152(k)*7^k, n >= 1.
a(n-1)^2*a(n) + 1 == 0 (mod 7^(n-1)), n >= 1 (from 3*a(n)^2* A212152(n) + A210853(n) == 0 (mod 7) and the second-to-last formula from above).
a(n) = 7^n + 1 - A212153(n), n >= 1.

A263950 Array read by antidiagonals: T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 13, 15, 1, 1, 6, 28, 40, 31, 1, 1, 12, 31, 120, 121, 63, 1, 1, 8, 91, 156, 496, 364, 127, 1, 1, 12, 57, 600, 781, 2016, 1093, 255, 1, 1, 12, 112, 400, 3751, 3906, 8128, 3280, 511, 1, 1, 18, 117, 960, 2801, 22932, 19531, 32640
Offset: 1

Views

Author

Álvar Ibeas, Oct 30 2015

Keywords

Comments

All the enumerated lattices have full rank k, since the quotient group is finite.
For m>=1, T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_nm x (C_m)^(k-1); and also, (C_nm)^(k-1) x C_m.
Also, number of subgroups of (C_n)^k isomorphic to C_n (and also, to (C_n)^{k-1}), cf. [Butler, Lemma 1.4.1].
T(n,k) is the sum of the divisors d of n^(k-1) such that n^(k-1)/d is k-free. Namely, the coefficient in n^(-(k-1)*s) of the Dirichlet series zeta(s) * zeta(s-1) / zeta(ks).
Also, number of isomorphism classes of connected (C_n)-fold coverings of a connected graph with circuit rank k.
Columns are multiplicative functions.

Examples

			There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1.
Array begins:
      k=1    k=2    k=3    k=4    k=5    k=6
n=1     1      1      1      1      1      1
n=2     1      3      7     15     31     63
n=3     1      4     13     40    121    364
n=4     1      6     28    120    496   2016
n=5     1      6     31    156    781   3906
n=6     1     12     91    600   3751  22932
		

References

  • Lynne M. Butler, Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., Vol. 112, No. 539, 1994.

Crossrefs

Programs

  • Mathematica
    f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)

Formula

T(n,k) = J_k(n) / J_1(n) = (Sum_{d|n} mu(n/d) * d^k) / phi(n).
T(n,k) = n^(k-1) * Product_{p|n, p prime} (p^k - 1) / ((p - 1) * p^(k-1)).
Dirichlet g.f. of k-th column: zeta(s-k+1) * Product_{p prime} (1 + p^(-s) + p^(1-s) + ... + p^(k-2-s)).
If n is squarefree, T(n,k) = A160870(n,k) = A000203(n^(k-1)).
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{i=1..n} T(i, k) ~ c * n^k, where c = (1/k) * Product_{p prime} (1 + (p^(k-1)-1)/((p-1)*p^k)).
Sum_{i>=1} 1/T(i, k) = zeta(k-1)*zeta(k) * Product_{p prime} (1 - 2/p^k + 1/p^(2*k-1)), for k > 2. (End)
T(n,k) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^k). - Ridouane Oudra, Apr 03 2025

A367297 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

Original entry on oeis.org

1, 2, 3, 5, 10, 8, 12, 34, 38, 21, 29, 104, 161, 130, 55, 70, 305, 592, 654, 420, 144, 169, 866, 2023, 2788, 2436, 1308, 377, 408, 2404, 6556, 10810, 11756, 8574, 3970, 987, 985, 6560, 20446, 39164, 50779, 46064, 28987, 11822, 2584, 2378, 17663, 61912, 134960, 202630, 218717, 171232, 95078, 34690, 6765
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    2    3
    5   10    8
   12   34   38    21
   29  104  161   130    55
   70  305  592   654   420  144
  169  866 2023  2788  2436 1308  377
  408 2404 6556 10810 11756 8574 3970 987
Row 4 represents the polynomial p(4,x) = 12 + 34*x + 38*x^2 + 21*x^3, so (T(4,k)) = (12,34,38,21), k=0..3.
		

Crossrefs

Cf. A000129 (column 1), A001906 (p(n,n-1)), A107839 (row sums, p(n,1)), A077925 (alternating row sums, p(n,-1)), A023000 (p(n,2)), A001076 (p(n,-2)), A186446 (p(n,-3)), A094440, A367208, A367209, A367210, A367211, A367298, A367299, A367300, A367301.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 2 + 3*x, u = p(2,x), and v = 1 - 2*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(8 + 4*x + 5*x^2)), b = (1/2)*(3*x + 2 + 1/k), c = (1/2)*(3*x + 2 - 1/k).

A125118 Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.

Original entry on oeis.org

1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2006

Keywords

Examples

			First 4 rows:
1: [1]_2
2: [11]_2 ........ [11]_3
3: [111]_2 ....... [111]_3 ....... [111]_4
4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5
_
1: 1
2: 2+1 ........... 3+1
3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1
4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
		

Crossrefs

This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Diagonals (adjusting offset as necessary): A060072, A023037, A031973, A173468.
Cf. A023037, A031973, A125119, A125120 (row sums).

Programs

  • Magma
    [((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
    
  • Mathematica
    Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
  • SageMath
    def A125118(n,k): return ((k+1)^n -1)/k
    flatten([[A125118(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Aug 15 2022

Formula

T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
Sum_{k=1..n} T(n, k) = A125120(n).
T(2*n-1, n) = A125119(n).
T(n, 1) = A000225(n).
T(n, 2) = A003462(n) for n>1.
T(n, 3) = A002450(n) for n>2.
T(n, 4) = A003463(n) for n>3.
T(n, 5) = A003464(n) for n>4.
T(n, 9) = A002275(n) for n>8.
T(n, n) = A060072(n+1).
T(n, n-1) = A023037(n) for n>1.
T(n, n-2) = A031973(n) for n>2.
T(n, k) = A055129(n, k+1) = A104878(n+k, k+1), 1<=k<=n. - Mathew Englander, Dec 19 2020

A212153 Approximations up to 7^n for one of the three 7-adic integers (-1)^(1/3).

Original entry on oeis.org

0, 5, 19, 19, 1048, 15454, 82682, 82682, 3376854, 14906456, 135967277, 700917775, 4655571261, 18496858462, 406052900090, 3797168264335, 22787414304107, 188952067152112, 654213095126526, 654213095126526, 57648689021992241, 456610020510052246, 2132247612759904267
Offset: 0

Views

Author

Wolfdieter Lang, May 02 2012

Keywords

Comments

See A210852 for comments and the approximation of one of the other three 7-adic integers (-1)^(1/3), called there u.
The numbers are computed from the recurrence given below in the formula field. This recurrence follows from the formula a(n) = 5^(7^(n-1)) (mod 7^n), n>= 1, which satisfies a(n)^3 + 1 == 0 (mod 7^n), n>=1. a(0) = 0 satisfies this congruence also. The proof can be done by showing that each term in the binomial expansion of (5^(7^(n-1)))^3 + 1 = (2*3^2*7 - 1)^(7^(n-1)) + 1 has a factor 7^n.
a(n) == 5 (mod 7), n>=1. This follows from the formula given above, and 5^(7^(n-1)) == 5 (mod 7), n>=1 (proof by induction).
The digit t(n), n>=0, multiplying 7^n in the 7-adic integer (-1)^(1/3) corresponding to the present sequence is obtained from the (unique) solution of the linear congruence 3*a(n)^2*t(n) + b(n) == 0 (mod 7), n>=1, with b(n):= (a(n)^3 + 1)/7^n = A212154(n). t(0):=5. For these digits see A212155. The 7-adic number is, read from right to left,
...3452150062464440013235234613550254541223240463025 =: v.
a(n) is obtained from reading v in base 7, and adding the first n terms.
One can show directly that a(n) = 7^n + 1 - x(n), n>=1, with x(n) = A210852(n), and z(n) = 7^n - 1 = 6*A023000(n), n>=0.
Iff a(n+1) = a(n) then t(n) = A212155(n) = 0.
See the Nagell reference given in A210848 for theorems 50 and 52 on p. 87, and formula (6) on page 86, adapted to this case. Because X^3 +1 = 0 (mod 7) has the three simple roots 3, 5 and 6, one has for X(n)^3 +1 == 0 (mod 7^n) exactly three solutions for each n>=1, which can be chosen as x(n) == 3 (mod 7), a(n) == 5 (mod 7) and z(n) == 6 (mod 7) == -1 (mod 7). The x- and z- sequences are given in A210852 and 6*A023000, respectively.
For n>0, a(n) - 1 (== a(n)^2 mod 7^n) and 7^n - a(n) (== a(n)^4 mod 7^n) are the two primitive cubic roots of unity in Z/(7^n Z). - Álvar Ibeas, Feb 20 2017
From Jianing Song, Aug 26 2022: (Start)
a(n) is the solution to x^2 - x + 1 == 0 (mod 7^n) that is congruent to 5 modulo 7 (if n>0).
A210852(n) is the multiplicative inverse of a(n) modulo 7^n. (End)

Examples

			a(4) == 19^7 (mod 7^4) = 893871739 (mod 2401) = 1048.
a(4) == 5^343 (mod 7^4) = 1048.
a(4) = 19 + 3*7^3 = 1048.
a(4) = 5*7^0 + 2*7^1 + 0*7^2 + 3*7^3 = 1048.
a(4) = 7^4 + 1 - 1354 = 1048.
a(3) = a(2) = 19 because A212155(2) = 0.
		

Crossrefs

Cf. A212155 (digits of (-1)^(1/3)), A210852 (approximations of another cube root of -1), 6*A023000 (approximations of -1).
Cf. A048898, A048899 (approximations of the 5-adic integers sqrt(-1)); A319097, A319098, A319199 (approximations of the 7-adic integers 6^(1/3)).

Programs

  • Maple
    a:=proc(n) option remember: if n=0 then 0 elif n=1 then 5
    else modp(a(n-1)^7, 7^n) fi end proc:
  • Mathematica
    Join[{0}, FoldList[PowerMod[#, 7, 7^#2] &, 5, Range[2, 25]]] (* Paolo Xausa, Jan 14 2025 *)
  • PARI
    a(n) = lift((1+sqrt(-3+O(7^n)))/2) \\ Jianing Song, Aug 26 2022

Formula

Recurrence: a(n) = a(n-1)^7 (mod 7^n), n>=2, a(0):=0, a(1)=5.
a(n) == 5^(7^(n-1)) (mod 7^n) == 5 (mod 7), n>= 1.
a(n+1) = a(n) + A212155(n)*7^n, n>=1.
a(n+1) = Sum_{k=0..n} A212155(k)*7^k, n>=1.
a(n-1)^2*a(n) + 1 == 0 (mod 7^(n-1)), n>=1 (from 3*a(n)^2*A212155(n) + A212154(n) == 0 (mod 7) and the formula two lines above).
a(n) = 7^n + 1 - A210852(n), n>=1.

A014827 a(1)=1, a(n) = 5*a(n-1) + n.

Original entry on oeis.org

1, 7, 38, 194, 975, 4881, 24412, 122068, 610349, 3051755, 15258786, 76293942, 381469723, 1907348629, 9536743160, 47683715816, 238418579097, 1192092895503, 5960464477534, 29802322387690, 149011611938471, 745058059692377, 3725290298461908, 18626451492309564, 93132257461547845
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (5^(n+1) - 4*n - 5)/16.
G.f.: x/((1-5*x)*(1-x)^2).
From Paul Barry, Jul 30 2004: (Start)
a(n) = Sum_{k=0..n} (n-k)*5^k = Sum_{k=0..n} k*5^(n-k).
a(n) = Sum_{k=0..n} binomial(n+2,k+2)*4^k [Offset 0]. (End)
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: exp(x)*(5*exp(4*x) - 4*x - 5)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 3. (End)

A104878 A sum-of-powers number triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Comments

Columns are partial sums of the columns of A004248. Row sums are A104879. Diagonal sums are A104880.
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020

Examples

			Triangle starts:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 15, 13,  5,  1;
  1,  6, 31, 40, 21,  6,  1;
  ...
		

Crossrefs

Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
T(2n,n) gives A031973.

Programs

  • Maple
    A104878 :=proc(n,k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq(A104878(n,k), k=0..n) od; seq(seq(A104878(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011

Formula

T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
T(n, k) = A069777(n+1,k)/A069777(n,k). [Johannes W. Meijer, Aug 21 2011]
T(n, k) = A055129(n+1-k, k) for n >= k > 0. - Mathew Englander, Dec 19 2020
Previous Showing 21-30 of 81 results. Next