A107893 Triangle read by rows, related to A055129 (repunits in base k).
1, 2, 1, 3, 4, 2, 4, 11, 14, 6, 5, 26, 64, 66, 24, 6, 57, 244, 456, 384, 120, 7, 120, 846, 2556, 3744, 2640, 720, 8, 247, 2778, 12762, 28944, 34560, 20880, 5040, 9, 502, 8828, 59382, 195768, 352080, 353520, 186480, 40320, 10, 1013, 27488, 264012, 1216368, 3091320, 4587120, 3966480, 1854720, 362880
Offset: 1
Examples
Binomial transform of Row 4 in the form: (4, 11, 14, 6, 0, 0, 0, ...) = Row 4 of A055129: 4, 15, 40, 85, ... which is generated from f(x) = x^3 + x^2 + x + 1; (x = 1,2,3, ...). Triangle starts: 1; 2, 1; 3, 4, 2; 4, 11, 14, 6; 5, 26, 64, 66, 24; 6, 57, 244, 456, 384, 120; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..5050 (1 <= n <= 100)
Programs
-
Mathematica
Table[Sum[Sum[(-1)^(k - j) Binomial[k, j] j^i, {j, 0, k}]/k, {i, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2016, after Jean-François Alcover at A028246 *)
Formula
n-th row = inverse binomial transform of n-th column of A055129, where the latter are generated from f(x) = x^(n-1) + x^(n-2) + ...+ x + 1; (x = 1, 2, 3, ...)
A(n,k) = Sum_{i=1..n} A028246(i,k) for 1 <= k <= n. - Werner Schulte, Dec 08 2016
The polynomials p(n,t) = Sum_{k=1..n} A(n,k)*t^k are given by p(1,t) = t and p(n+1,t) = t + t*(t+1)*(d/dt)p(n,t) for n >= 1. - Werner Schulte, Dec 12 2016
Comments