A016218
Expansion of 1/((1-x)*(1-4*x)*(1-5*x)).
Original entry on oeis.org
1, 10, 71, 440, 2541, 14070, 75811, 400900, 2091881, 10808930, 55442751, 282806160, 1436400421, 7271480590, 36715316891, 185008240220, 930767824161, 4676745613050, 23475354034231, 117743274047080, 590182385739101, 2956775990710310, 14807336201610771
Offset: 0
Cf.
A016208,
A000392,
A000225,
A003462,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A016256.
A016256
Expansion of 1/((1-x)*(1-8*x)*(1-9*x)).
Original entry on oeis.org
1, 18, 235, 2700, 28981, 298278, 2984095, 29253600, 282456361, 2695498938, 25486623955, 239196683700, 2231306698141, 20710052641998, 191416812647815, 1762962024789000, 16188343910770321, 148268580698287458, 1355005110295423675, 12359749064745505500
Offset: 0
-
a:=n->sum(9^(n-j)-8^(n-j),j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 04 2007
-
Table[(-8^(n + 2) + 7*9^(n + 1) + 1)/56, {n, 40}] (* and *) CoefficientList[Series[1/((1 - z) (1 - 8*z) (1 - 9*z)), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
-
Vec(1/((1-x)*(1-8*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
A083713
a(n) = (8^n - 1)*3/7.
Original entry on oeis.org
0, 3, 27, 219, 1755, 14043, 112347, 898779, 7190235, 57521883, 460175067, 3681400539, 29451204315, 235609634523, 1884877076187, 15079016609499, 120632132875995, 965057063007963, 7720456504063707, 61763652032509659
Offset: 0
From _Zerinvary Lajos_, Jan 14 2007: (Start)
Octal..........decimal:
0....................0
3....................3
33..................27
333................219
3333..............1755
33333............14043
333333..........112347
3333333.........898779
33333333.......7190235
333333333.....57521883
3333333333...460175067
etc. (End)
-
(3/7)(8^Range[0,20]-1) (* or *) LinearRecurrence[{9,-8},{0,3},30] (* or *) NestList[8#+3&,0,30] (* Harvey P. Dale, Jun 06 2013 *)
-
a(n)=(8^n-1)*3/7 \\ Charles R Greathouse IV, Oct 07 2015
A218750
a(n) = (47^n - 1)/46.
Original entry on oeis.org
0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377, 12325595054099071896078720
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 48*Self(n-1) - 47*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Table[(47^n - 1)/46, {n, 0, 19}] (* Alonso del Arte, Nov 04 2012 *)
LinearRecurrence[{48, -47}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218750(n):=(47^n-1)/46$ makelist(A218750(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218750(n)=47^n\46
A033118
Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
Original entry on oeis.org
1, 8, 65, 520, 4161, 33288, 266305, 2130440, 17043521, 136348168, 1090785345, 8726282760, 69810262081, 558482096648, 4467856773185, 35742854185480, 285942833483841, 2287542667870728, 18300341342965825, 146402730743726600
Offset: 1
Pairwise sums are (8^n - 1)/7 (
A023001).
-
[Round((8*8^n-8)/63): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
seq(1/7*floor(8^(n+1)/9),n=1..22); # Mircea Merca, Dec 27 2010
-
Table[FromDigits[PadRight[{},n,{1,0}],8],{n,20}] (* or *) LinearRecurrence[ {8,1,-8},{1,8,65},20] (* Harvey P. Dale, Jan 20 2021 *)
A218726
a(n) = (23^n - 1)/22.
Original entry on oeis.org
0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 24*Self(n-1)-23*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{24, -23}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(23^Range[0,20]-1)/22 (* Harvey P. Dale, Nov 09 2012 *)
-
A218726(n):=(23^n-1)/22$
makelist(A218726(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218726(n)=23^n\22
A218732
a(n) = (29^n - 1)/28.
Original entry on oeis.org
0, 1, 30, 871, 25260, 732541, 21243690, 616067011, 17865943320, 518112356281, 15025258332150, 435732491632351, 12636242257338180, 366451025462807221, 10627079738421409410, 308185312414220872891, 8937374060012405313840, 259183847740359754101361
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 30*Self(n-1)-29*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{30, -29}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218732(n):=(29^n-1)/28$
makelist(A218732(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=29^n\28
A218733
a(n) = (30^n - 1)/29.
Original entry on oeis.org
0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 31*Self(n-1) - 30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{31, -30}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(30^Range[0,20]-1)/29 (* Harvey P. Dale, Nov 22 2022 *)
-
A218733(n):=floor((30^n-1)/29)$ makelist(A218733(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218733(n)=30^n\29
A218740
a(n) = (37^n - 1)/36.
Original entry on oeis.org
0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 38*Self(n-1)-37*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{38, -37}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218740(n):=(37^n-1)/36$
makelist(A218740(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218740(n)=37^n\36
A218744
a(n) = (41^n - 1)/40.
Original entry on oeis.org
0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 42*Self(n-1)-41*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{42, -41}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218744(n):=(41^n-1)/40$
makelist(A218744(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218744(n)=41^n\40
Comments