cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 83 results. Next

A218746 a(n) = (43^n - 1)/42.

Original entry on oeis.org

0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 43 (A009987).
0 followed by the binomial transform of A170762. - R. J. Mathar, Jul 18 2015

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-43*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 44*a(n-1) - 43*a(n-2). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(43^n/42). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(22*x)*sinh(21*x)/21. - Elmo R. Oliveira, Aug 27 2024

A353147 Decimal repunits written in base 8.

Original entry on oeis.org

0, 1, 13, 157, 2127, 25547, 331007, 4172107, 52305307, 647665707, 10216432707, 122621414707, 1473657200707, 20126330410707, 241540165130707, 3120702223570707, 37450626705270707, 473627744665470707, 6125757360430070707, 75533532545361070707
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(digits((10^n-1)/9, 8));
    
  • Python
    def a(n): return 0 if n == 0 else int(oct(int("1"*n))[2:])
    print([a(n) for n in range(13)]) # Michael S. Branicky, Apr 26 2022

Formula

a(n) = A007094(A002275(n)).

A125835 Numbers whose base-8 or octal representation is 22222222.......2.

Original entry on oeis.org

0, 2, 18, 146, 1170, 9362, 74898, 599186, 4793490, 38347922, 306783378, 2454267026, 19634136210, 157073089682, 1256584717458, 10052677739666, 80421421917330, 643371375338642, 5146971002709138, 41175768021673106, 329406144173384850, 2635249153387078802, 21081993227096630418
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Examples

			Octal.............decimal
0.......................0
2.......................2
22.....................18
222...................146
2222.................1170
22222................9362
222222..............74898
2222222............599186
22222222..........4793490
222222222........38347922
2222222222......306783378
etc. ...............etc.
		

Crossrefs

Cf. A023001.

Programs

  • GAP
    List([1..30], n-> 2*(8^(n-1) -1)/7); # G. C. Greubel, Aug 03 2019
  • Magma
    [2*(8^(n-1) -1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(2*(8^n-1)/7, n=0..30);
  • Mathematica
    nxt2[n_]:=Module[{idn=IntegerDigits[n,8]}, FromDigits[PadLeft[idn,Length[idn]+1,2],8]]; Join[{0},NestList[nxt2,2,30]]  (* Harvey P. Dale, Mar 09 2011 *)
    Module[{nn=30,c},c=PadRight[{},nn,2];Table[FromDigits[Take[c,n],8],{n,0,nn}]] (* Harvey P. Dale, Sep 05 2015 *)
    2*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    a(n)=2*(1<<(3*n-3)\7) \\ Charles R Greathouse IV, Mar 09 2011
    
  • PARI
    vector(30, n, 2*(8^(n-1) -1)/7) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [2*(8^(n-1) -1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 2*(8^(n-1) - 1)/7.
a(n) = 8*a(n-1) + 2, with a(1)=0. - Vincenzo Librandi, Sep 30 2010
From G. C. Greubel, Aug 03 2019: (Start)
a(n) = 2*A023001(n).
G.f.: 2*x^2/((1-x)*(1-8*x)).
E.g.f.: 2*(exp(8*x) - exp(x))/7. (End)

Extensions

Offset corrected by N. J. A. Sloane, Oct 02 2010
Terms a(21) onward added by G. C. Greubel, Aug 03 2019

A218728 a(n) = (25^n - 1)/24.

Original entry on oeis.org

0, 1, 26, 651, 16276, 406901, 10172526, 254313151, 6357828776, 158945719401, 3973642985026, 99341074625651, 2483526865641276, 62088171641031901, 1552204291025797526, 38805107275644938151, 970127681891123453776, 24253192047278086344401, 606329801181952158610026
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 25 (A009969); q-integers for q=25.
Partial sums are in A014914. Also, the sequence is related to A014943 by A014943(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. - Bruno Berselli, Nov 07 2012

Crossrefs

Programs

Formula

a(n) = floor(25^n/24).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-25*x)).
a(n) = 26*a(n-1) - 25*a(n-2). (End)
E.g.f.: exp(13*x)*sinh(12*x)/12. - Elmo R. Oliveira, Aug 27 2024
a(n) = 25*a(n-1) + 1. - Jerzy R Borysowicz, Sep 05 2025

A218743 a(n) = (40^n - 1)/39.

Original entry on oeis.org

0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 40 (A009983).

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
  • Mathematica
    LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=40^n\39
    

Formula

a(n) = floor(40^n/39).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-40*x)).
a(n) = 41*a(n-1) - 40*a(n-2). (End)
E.g.f.: exp(x)*(exp(39*x) - 1)/39. - Elmo R. Oliveira, Aug 29 2024

A269025 a(n) = Sum_{k = 0..n} 60^k.

Original entry on oeis.org

1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

Partial sums of powers of 60 (A159991).
Converges in a 10-adic sense to ...762711864406779661.
More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1).

Crossrefs

Cf. A159991.
Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469 (k=32), A218736-A218753 (k=33..50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000).

Programs

  • Mathematica
    Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]
    Table[(60^(n + 1) - 1)/59, {n, 0, 15}]
    LinearRecurrence[{61, -60}, {1, 61}, 15]
  • PARI
    a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: 1/((1 - 60*x)*(1 - x)).
a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59).
a(n+1) = 60*a(n) + 1, a(0)=1.
a(n) = Sum_{k = 0..n} A159991(k).
Sum_{n>=0} 1/a(n) = 1.016671221665660580331...
E.g.f.: exp(x)*(60*exp(59*x) - 1)/59. - Stefano Spezia, Mar 23 2023

A098436 Triangle of 3rd central factorial numbers T(n,k).

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 73, 36, 1, 1, 585, 1045, 100, 1, 1, 4681, 28800, 7445, 225, 1, 1, 37449, 782281, 505280, 35570, 441, 1, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1, 1, 2396745, 571593565, 2140851900, 652061451, 33209946, 399738, 1296, 1
Offset: 0

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Examples

			  1;
  1,   1;
  1,   9,    1;
  1,  73,   36,   1;
  1, 585, 1045, 100, 1;
  ...
		

Crossrefs

First column is A023001, first diagonal is A000537.
Row sums are in A098437.
Replace in recurrence (k+1)^3 with k: A008277; with k^2: A008957 (note offsets).

Programs

  • Maple
    A098436 := proc(n,k)
        option remember;
        if k=0 or k = n then
            1;
        else
            (k+1)^3*procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc:
    seq(seq( A098436(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 13 2025
  • Mathematica
    T[n_, n_] = 1;
    T[n_ /; n>=0, k_] /; 0<=k<=n := T[n, k] = (k+1)^3 T[n-1, k]+T[n-1, k-1];
    T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 08 2022 *)

Formula

Recurrence: T(n, k) = (k+1)^3*T(n-1, k) + T(n-1, k-1), T(0, 0)=1.

A110205 Triangle, read by rows, where T(n,k) equals the sum of cubes of numbers < 2^n having exactly k ones in their binary expansion.

Original entry on oeis.org

1, 9, 27, 73, 368, 343, 585, 3825, 6615, 3375, 4681, 36394, 88536, 86614, 29791, 37449, 332883, 1024002, 1449198, 970677, 250047, 299593, 2979420, 10970133, 20078192, 19714083, 9974580, 2048383, 2396745, 26298405, 112122225, 250021125, 320944275, 239783895, 97221555, 16581375
Offset: 1

Views

Author

Paul D. Hanna, Jul 16 2005

Keywords

Comments

Compare to triangle A110200 (sum of squares).

Examples

			Row 4 is formed by sums of cubes of numbers < 2^4:
  T(4,1) = 1^3 + 2^3 + 4^3 + 8^3 = 585;
  T(4,2) = 3^3 + 5^3 + 6^3 + 9^3 + 10^3 + 12^3 = 3825;
  T(4,3) = 7^3 + 11^3 + 13^3 + 14^3 = 6615;
  T(4,4) = 15^3 = 3375.
Triangle begins:
        1;
        9,       27;
       73,      368,       343;
      585,     3825,      6615,      3375;
     4681,    36394,     88536,     86614,     29791;
    37449,   332883,   1024002,   1449198,    970677,    250047;
   299593,  2979420,  10970133,  20078192,  19714083,   9974580,  2048383;
  2396745, 26298405, 112122225, 250021125, 320944275, 239783895, 97221555, 16581375; ...
Row g.f.s are:
  row 1: (1 + 2*x + 1*x^2)/(1+x)^2;
  row 2: (9 + 36*x + 27*x^2)/(1+x);
  row 3: (73 + 368*x + 343*x^2);
  row 4: (585 + 3240*x + 3375*x^2)*(1+x).
G.f. for row n is:
  ((8^n-1)/7 + ((2^n-1)*(4^n-1)-(8^n-1)/7)*x + (2^n-1)^3*x^2)*(1+x)^(n-3).
		

Crossrefs

Cf. A110206 (row sums), A110207 (central terms), A023001 (column 1).

Programs

  • Magma
    b:= func< n,k | Binomial(n-3, k) >;
    A110205:= func< n,k | (8^n-1)/7*(b(n,k-1) -b(n,k-2)) +(2^n-1)^2*((2^n+1)*b(n,k-2) +(2^n-1)*b(n,k-3)) >;
    [A110205(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2024
    
  • Mathematica
    b[n_, k_]= Binomial[n-3, k];
    T[n_, k_]:= (8^n-1)/7*(b[n,k-1] -b[n,k-2]) + (2^n-1)^2*((2^n+1)*b[n,k-2] + (2^n-1)*b[n,k-3]);
    A110205[n_, k_]:= If[n<3, T[n,k]/2, T[n,k]];
    Table[A110205[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2024 *)
  • PARI
    T(n,k)=(8^n-1)/7*binomial(n-3,k-1)+((2^n-1)*(4^n-1)-(8^n-1)/7)*binomial(n-3,k-2) +(2^n-1)^3*binomial(n-3,k-3)
    
  • PARI
    /* Sum of cubes of numbers<2^n with k 1-bits: */
    T(n,k)=local(B=vector(n+1));if(n
    				
  • SageMath
    def b(n,k): return binomial(n-3, k)
    def A110205(n,k): return (8^n-1)/7*(b(n,k-1) - b(n,k-2)) + (2^n-1)^2*((2^n+1)*b(n,k-2) + (2^n-1)*b(n,k-3))
    flatten([[A110205(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2024

Formula

T(n, k) = (8^n-1)/7*C(n-3, k-1) + ((2^n-1)*(4^n-1)-(8^n-1)/7)*C(n-3, k-2) + (2^n-1)^3*C(n-3, k-3).
G.f. for row n: ((8^n-1)/7 + ((2^n-1)*(4^n-1)-(8^n-1)/7)*x + (2^n-1)^3*x^2)*(1+x)^(n-3).

A125837 Numbers whose base 8 or octal representation is 6666666......6.

Original entry on oeis.org

0, 6, 54, 438, 3510, 28086, 224694, 1797558, 14380470, 115043766, 920350134, 7362801078, 58902408630, 471219269046, 3769754152374, 30158033218998, 241264265751990, 1930114126015926, 15440913008127414, 123527304065019318, 988218432520154550, 7905747460161236406
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> 6*(8^(n-1)-1)/7); # G. C. Greubel, Aug 03 2019
  • Magma
    [6*(8^(n-1)-1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(6*(8^n-1)/7, n=0..30);
  • Mathematica
    FromDigits[#,8]&/@Table[Table[6,{i}],{i,0,30}]  (* Harvey P. Dale, Mar 19 2011 *)
    6*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(30, n, 6*(8^(n-1)-1)/7) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [6*(8^(n-1)-1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 6*(8^(n-1) -1)/7 = 6*A023001(n-1).
a(n) = 8*a(n-1) + 6 for n>1, a(1)=0. - Vincenzo Librandi, Oct 03 2010
G.f.: 6*x^2/( (1-x)*(1-8*x) ). - R. J. Mathar, Oct 07 2016
E.g.f.: 6*(exp(8*x) - exp(x))/7. - G. C. Greubel, Aug 03 2019
a(n) = -1 + A083068(n-1). - Alois P. Heinz, May 20 2023

A218725 a(n) = (22^n - 1)/21.

Original entry on oeis.org

0, 1, 23, 507, 11155, 245411, 5399043, 118778947, 2613136835, 57489010371, 1264758228163, 27824681019587, 612142982430915, 13467145613480131, 296277203496562883, 6518098476924383427, 143398166492336435395, 3154759662831401578691, 69404712582290834731203
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 22; q-integers for q=22: Diagonal k=1 in the triangle A022186.
Partial sums are in A014907. Also, the sequence is related to A014940 by A014940(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [Bruno Berselli, Nov 06 2012]

Crossrefs

Programs

Formula

a(n) = floor(22^n/21).
G.f.: x/((1-x)*(1-22*x)). [Bruno Berselli, Nov 06 2012]
a(n) = 23*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(21*x) - 1)/21. - Elmo R. Oliveira, Aug 29 2024
Previous Showing 41-50 of 83 results. Next