A218746
a(n) = (43^n - 1)/42.
Original entry on oeis.org
0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 44*Self(n-1) - 43*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{44, -43}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[43^Range[0,20]]] (* Harvey P. Dale, Jan 27 2015 *)
-
A218746(n):=(43^n-1)/42$
makelist(A218746(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218746(n)=43^n\42
A353147
Decimal repunits written in base 8.
Original entry on oeis.org
0, 1, 13, 157, 2127, 25547, 331007, 4172107, 52305307, 647665707, 10216432707, 122621414707, 1473657200707, 20126330410707, 241540165130707, 3120702223570707, 37450626705270707, 473627744665470707, 6125757360430070707, 75533532545361070707
Offset: 0
-
a(n) = fromdigits(digits((10^n-1)/9, 8));
-
def a(n): return 0 if n == 0 else int(oct(int("1"*n))[2:])
print([a(n) for n in range(13)]) # Michael S. Branicky, Apr 26 2022
A125835
Numbers whose base-8 or octal representation is 22222222.......2.
Original entry on oeis.org
0, 2, 18, 146, 1170, 9362, 74898, 599186, 4793490, 38347922, 306783378, 2454267026, 19634136210, 157073089682, 1256584717458, 10052677739666, 80421421917330, 643371375338642, 5146971002709138, 41175768021673106, 329406144173384850, 2635249153387078802, 21081993227096630418
Offset: 1
Octal.............decimal
0.......................0
2.......................2
22.....................18
222...................146
2222.................1170
22222................9362
222222..............74898
2222222............599186
22222222..........4793490
222222222........38347922
2222222222......306783378
etc. ...............etc.
-
List([1..30], n-> 2*(8^(n-1) -1)/7); # G. C. Greubel, Aug 03 2019
-
[2*(8^(n-1) -1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
-
seq(2*(8^n-1)/7, n=0..30);
-
nxt2[n_]:=Module[{idn=IntegerDigits[n,8]}, FromDigits[PadLeft[idn,Length[idn]+1,2],8]]; Join[{0},NestList[nxt2,2,30]] (* Harvey P. Dale, Mar 09 2011 *)
Module[{nn=30,c},c=PadRight[{},nn,2];Table[FromDigits[Take[c,n],8],{n,0,nn}]] (* Harvey P. Dale, Sep 05 2015 *)
2*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
-
a(n)=2*(1<<(3*n-3)\7) \\ Charles R Greathouse IV, Mar 09 2011
-
vector(30, n, 2*(8^(n-1) -1)/7) \\ G. C. Greubel, Aug 03 2019
-
[2*(8^(n-1) -1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
A218728
a(n) = (25^n - 1)/24.
Original entry on oeis.org
0, 1, 26, 651, 16276, 406901, 10172526, 254313151, 6357828776, 158945719401, 3973642985026, 99341074625651, 2483526865641276, 62088171641031901, 1552204291025797526, 38805107275644938151, 970127681891123453776, 24253192047278086344401, 606329801181952158610026
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 26*Self(n-1)-25*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{26, -25}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(25^Range[0,20]-1)/24 (* Harvey P. Dale, Aug 23 2020 *)
-
A218728(n):=(25^n-1)/24$
makelist(A218728(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218728(n)=25^n\24
A218743
a(n) = (40^n - 1)/39.
Original entry on oeis.org
0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=40^n\39
A269025
a(n) = Sum_{k = 0..n} 60^k.
Original entry on oeis.org
1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225 (k=2),
A003462 (k=3),
A002450 (k=4),
A003463 (k=5),
A003464 (k=6),
A023000 (k=7),
A023001 (k=8),
A002452 (k=9),
A002275 (k=10),
A016123 (k=11),
A016125 (k=12),
A091030 (k=13),
A135519 (k=14),
A135518 (k=15),
A131865 (k=16),
A091045 (k=17),
A218721 (k=18),
A218722 (k=19),
A064108 (k=20),
A218724-
A218734 (k=21..31),
A132469 (k=32),
A218736-
A218753 (k=33..50), this sequence (k=60),
A133853 (k=64),
A094028 (k=100),
A218723 (k=256),
A261544 (k=1000).
-
Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]
Table[(60^(n + 1) - 1)/59, {n, 0, 15}]
LinearRecurrence[{61, -60}, {1, 61}, 15]
-
a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016
A098436
Triangle of 3rd central factorial numbers T(n,k).
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 73, 36, 1, 1, 585, 1045, 100, 1, 1, 4681, 28800, 7445, 225, 1, 1, 37449, 782281, 505280, 35570, 441, 1, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1, 1, 2396745, 571593565, 2140851900, 652061451, 33209946, 399738, 1296, 1
Offset: 0
1;
1, 1;
1, 9, 1;
1, 73, 36, 1;
1, 585, 1045, 100, 1;
...
Replace in recurrence (k+1)^3 with k:
A008277; with k^2:
A008957 (note offsets).
-
A098436 := proc(n,k)
option remember;
if k=0 or k = n then
1;
else
(k+1)^3*procname(n-1,k)+procname(n-1,k-1) ;
end if;
end proc:
seq(seq( A098436(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 13 2025
-
T[n_, n_] = 1;
T[n_ /; n>=0, k_] /; 0<=k<=n := T[n, k] = (k+1)^3 T[n-1, k]+T[n-1, k-1];
T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 08 2022 *)
A110205
Triangle, read by rows, where T(n,k) equals the sum of cubes of numbers < 2^n having exactly k ones in their binary expansion.
Original entry on oeis.org
1, 9, 27, 73, 368, 343, 585, 3825, 6615, 3375, 4681, 36394, 88536, 86614, 29791, 37449, 332883, 1024002, 1449198, 970677, 250047, 299593, 2979420, 10970133, 20078192, 19714083, 9974580, 2048383, 2396745, 26298405, 112122225, 250021125, 320944275, 239783895, 97221555, 16581375
Offset: 1
Row 4 is formed by sums of cubes of numbers < 2^4:
T(4,1) = 1^3 + 2^3 + 4^3 + 8^3 = 585;
T(4,2) = 3^3 + 5^3 + 6^3 + 9^3 + 10^3 + 12^3 = 3825;
T(4,3) = 7^3 + 11^3 + 13^3 + 14^3 = 6615;
T(4,4) = 15^3 = 3375.
Triangle begins:
1;
9, 27;
73, 368, 343;
585, 3825, 6615, 3375;
4681, 36394, 88536, 86614, 29791;
37449, 332883, 1024002, 1449198, 970677, 250047;
299593, 2979420, 10970133, 20078192, 19714083, 9974580, 2048383;
2396745, 26298405, 112122225, 250021125, 320944275, 239783895, 97221555, 16581375; ...
Row g.f.s are:
row 1: (1 + 2*x + 1*x^2)/(1+x)^2;
row 2: (9 + 36*x + 27*x^2)/(1+x);
row 3: (73 + 368*x + 343*x^2);
row 4: (585 + 3240*x + 3375*x^2)*(1+x).
G.f. for row n is:
((8^n-1)/7 + ((2^n-1)*(4^n-1)-(8^n-1)/7)*x + (2^n-1)^3*x^2)*(1+x)^(n-3).
-
b:= func< n,k | Binomial(n-3, k) >;
A110205:= func< n,k | (8^n-1)/7*(b(n,k-1) -b(n,k-2)) +(2^n-1)^2*((2^n+1)*b(n,k-2) +(2^n-1)*b(n,k-3)) >;
[A110205(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2024
-
b[n_, k_]= Binomial[n-3, k];
T[n_, k_]:= (8^n-1)/7*(b[n,k-1] -b[n,k-2]) + (2^n-1)^2*((2^n+1)*b[n,k-2] + (2^n-1)*b[n,k-3]);
A110205[n_, k_]:= If[n<3, T[n,k]/2, T[n,k]];
Table[A110205[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2024 *)
-
T(n,k)=(8^n-1)/7*binomial(n-3,k-1)+((2^n-1)*(4^n-1)-(8^n-1)/7)*binomial(n-3,k-2) +(2^n-1)^3*binomial(n-3,k-3)
-
/* Sum of cubes of numbers<2^n with k 1-bits: */
T(n,k)=local(B=vector(n+1));if(n
-
def b(n,k): return binomial(n-3, k)
def A110205(n,k): return (8^n-1)/7*(b(n,k-1) - b(n,k-2)) + (2^n-1)^2*((2^n+1)*b(n,k-2) + (2^n-1)*b(n,k-3))
flatten([[A110205(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2024
A125837
Numbers whose base 8 or octal representation is 6666666......6.
Original entry on oeis.org
0, 6, 54, 438, 3510, 28086, 224694, 1797558, 14380470, 115043766, 920350134, 7362801078, 58902408630, 471219269046, 3769754152374, 30158033218998, 241264265751990, 1930114126015926, 15440913008127414, 123527304065019318, 988218432520154550, 7905747460161236406
Offset: 1
-
List([1..30], n-> 6*(8^(n-1)-1)/7); # G. C. Greubel, Aug 03 2019
-
[6*(8^(n-1)-1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
-
seq(6*(8^n-1)/7, n=0..30);
-
FromDigits[#,8]&/@Table[Table[6,{i}],{i,0,30}] (* Harvey P. Dale, Mar 19 2011 *)
6*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
-
vector(30, n, 6*(8^(n-1)-1)/7) \\ G. C. Greubel, Aug 03 2019
-
[6*(8^(n-1)-1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
A218725
a(n) = (22^n - 1)/21.
Original entry on oeis.org
0, 1, 23, 507, 11155, 245411, 5399043, 118778947, 2613136835, 57489010371, 1264758228163, 27824681019587, 612142982430915, 13467145613480131, 296277203496562883, 6518098476924383427, 143398166492336435395, 3154759662831401578691, 69404712582290834731203
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 23*Self(n-1) - 22*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{23, -22}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218725(n):=(22^n-1)/21$ makelist(A218725(n),n,0,30); /* Martin Ettl, Nov 06 2012 */
-
A218725(n)=22^n\21
Comments