cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A125725 Numbers whose base-7 representation is 222....2.

Original entry on oeis.org

0, 2, 16, 114, 800, 5602, 39216, 274514, 1921600, 13451202, 94158416, 659108914, 4613762400, 32296336802, 226074357616, 1582520503314, 11077643523200, 77543504662402, 542804532636816, 3799631728457714, 26597422099204000
Offset: 1

Views

Author

Zerinvary Lajos, Feb 02 2007

Keywords

Examples

			base 7.......decimal
0..................0
2..................2
22................16
222..............114
2222.............800
22222...........5602
222222.........39216
2222222.......274514
22222222.....1921600
222222222...13451202
etc...........etc.
		

Crossrefs

Cf. also A002276, A005610, A020988, A024023, A125831, A125835, A125857 for related or similarly constructed sequences.

Programs

  • GAP
    List([1..25], n-> (7^(n-1) -1)/3); # G. C. Greubel, May 23 2019
  • Magma
    [0] cat [n:n in [1..15000000]| Set(Intseq(n,7)) subset [2]]; // Marius A. Burtea, May 06 2019
    
  • Magma
    [(7^(n-1)-1)/3: n in [1..25]]; // Marius A. Burtea, May 06 2019
    
  • Maple
    seq(2*(7^n-1)/6, n=0..25);
  • Mathematica
    FromDigits[#,7]&/@Table[PadLeft[{2},n,2],{n,0,25}]  (* Harvey P. Dale, Apr 13 2011 *)
    (7^(Range[25]-1) - 1)/3 (* G. C. Greubel, May 23 2019 *)
  • PARI
    vector(25, n, (7^(n-1)-1)/3) \\ Davis Smith, Apr 04 2019
    
  • Sage
    [(7^(n-1) -1)/3 for n in (1..25)] # G. C. Greubel, May 23 2019
    

Formula

a(n) = (7^(n-1) - 1)/3 = 2*A023000(n-1).
a(n) = 7*a(n-1) + 2, with a(1)=0. - Vincenzo Librandi, Sep 30 2010
G.f.: 2*x^2 / ( (1-x)*(1-7*x) ). - R. J. Mathar, Sep 30 2013
From Davis Smith, Apr 04 2019: (Start)
A007310(a(n) + 1) = 7^(n - 1).
A047522(a(n + 1)) = -1*A165759(n). (End)
E.g.f.: (exp(7*x) - 7*exp(x) + 6)/21. - Stefano Spezia, Jan 12 2025

Extensions

Offset corrected by N. J. A. Sloane, Oct 02 2010

A125834 Numbers that have exactly 15 representations as a product of two palindromes.

Original entry on oeis.org

4888884, 8896888, 13345332, 74732526, 100999899, 140732592, 179555376, 269130862, 295777482, 444888444, 734059326, 880968088, 978745768, 1032039008, 1183109928, 1321452132, 1399939992, 1548058512, 1614785172, 1886140256
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 11 2006

Keywords

Examples

			4888884 is in the sequence since 4888884 = 1*4888884 = 2*2444442 = 4*1222221 = 11*444444 = 22*222222 = 44*111111 = 111*44044 = 121*40404 = 222*22022 = 242*20202 = 444*11011 = 484*10101 = 1001*4884 = 1221*4004 = 2002*2442.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Length[Select[Divisors[n],#<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]];Do[If[f[n]==15,Print[n]],{n,125000000}]

Extensions

a(6)-a(20) from Donovan Johnson, Aug 05 2009

A155803 A023001 interleaved with 2*A023001 and 4*A023001.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 9, 18, 36, 73, 146, 292, 585, 1170, 2340, 4681, 9362, 18724, 37449, 74898, 149796, 299593, 599186, 1198372, 2396745, 4793490, 9586980, 19173961, 38347922, 76695844, 153391689, 306783378, 613566756, 1227133513, 2454267026, 4908534052
Offset: 0

Views

Author

Paul Curtz, Jan 27 2009

Keywords

Comments

A033138 with three zeros prepended. - Joerg Arndt, Mar 10 2015

Programs

Formula

a(3n) = A023001(n). a(3n+1) = 2*A023001(n) = A125835(n). a(3n+2) = 4*A023001(n).
a(n) = a(n-3)+2^(n-3) = a(n-3)+A000079(n-3). Here, a(.) can also be one of its higher order differences.
a(n) = 2*a(n-1)+a(n-3)-2*a(n-4). G.f.: x^3/((x-1)*(2*x-1)*(1+x+x^2)). [R. J. Mathar, Jul 23 2009]
a(n) = floor(2^n/7). [Mircea Merca, Dec 22 2010]

Extensions

Edited and extended by R. J. Mathar, Jul 23 2009

A334076 a(n) = bitwise NOR of n and 2n.

Original entry on oeis.org

0, 0, 1, 0, 3, 0, 1, 0, 7, 4, 1, 0, 3, 0, 1, 0, 15, 12, 9, 8, 3, 0, 1, 0, 7, 4, 1, 0, 3, 0, 1, 0, 31, 28, 25, 24, 19, 16, 17, 16, 7, 4, 1, 0, 3, 0, 1, 0, 15, 12, 9, 8, 3, 0, 1, 0, 7, 4, 1, 0, 3, 0, 1, 0, 63, 60, 57, 56, 51, 48, 49, 48, 39, 36, 33, 32, 35, 32, 33
Offset: 0

Views

Author

Alois P. Heinz, Apr 13 2020

Keywords

Comments

Exactly all bits that are 0 in both parameters (but not a leading 0 of both) are set to 1 in the output of bitwise NOR.

Crossrefs

Programs

  • Maple
    a:= n-> Bits[Nor](n, 2*n):
    seq(a(n), n=0..127);
  • PARI
    a(n) = my(x=bitor(n, 2*n)); bitneg(x, #binary(x)); \\ Michel Marcus, Apr 14 2020
  • Python
    def A334076(n):
        m = n|(2*n)
        return 0 if n == 0 else 2**(len(bin(m))-2)-1-m # Chai Wah Wu, Apr 14 2020
    

Formula

a(n) = 0 <=> n in { A247648 } union { 0 }.
a(n) = n-1 <=> n in { A000079 }.
a(n) = n/2 <=> n in { A125835 }.
a(n) = n*3/4 <=> n in { A141032 }.
Showing 1-4 of 4 results.