cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A294316 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where A(n,k) is the sum of products of terms in all partitions of k*n into powers of k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 11, 1, 1, 5, 13, 27, 1, 1, 6, 21, 49, 83, 1, 1, 7, 31, 85, 157, 195, 1, 1, 8, 43, 156, 357, 481, 515, 1, 1, 9, 57, 259, 781, 1445, 1534, 1155, 1, 1, 10, 73, 400, 1555, 3931, 5797, 4693, 2899, 1, 1, 11, 91, 585, 2801, 9331, 19681, 23205
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2017

Keywords

Examples

			Square array A(n,k) begins:
   1,   1,   1,    1,    1, ...
   1,   3,   4,    5,    6, ...
   1,  11,  13,   21,   31, ...
   1,  27,  49,   85,  156, ...
   1,  83, 157,  357,  781, ...
   1, 195, 481, 1445, 3931, ...
		

Crossrefs

Columns k=1..3 give A000012, A289842, A294298.
Rows n=0 gives A000012.
Main diagonal gives A023037.
Cf. A292477.

A331672 Sum of all base-n numbers with digit sum n and length at most n.

Original entry on oeis.org

3, 91, 2635, 94501, 4254936, 234572213, 15403880115, 1176838159861, 102631111100848, 10063085278250005, 1095923297151849530, 131253123286275198027, 17145216226230367266330, 2425892898650501790637545, 369599184391990522425455939, 60326656013944234430010524773
Offset: 2

Views

Author

Alois P. Heinz, Feb 22 2020

Keywords

Comments

The cardinality of these numbers is given by A048775(n-1).

Examples

			a(2) = 3 = 11_2.
a(3) = 91 = 5 + 7 + 11 + 13 + 15 + 19 + 21 = 12_3 + 21_3 + 102_3 + 111_3 + 120_3 + 201_3 + 210_3.
a(10) = A130835(10) = 102631111100848.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
          `if`(i=0, 0, add((p->[p[1], p[2]*k+p[1]*d])(
             b(n-d, i-1, k)), d=0..min(n, k-1))))
        end:
    a:= n-> b(n$3)[2]:
    seq(a(n), n=2..17);
    # second Maple program:
    a:= n-> (binomial(2*n-1, n)-n)*(n^n-1)/(n-1):
    seq(a(n), n=2..17);

Formula

a(n) = A048775(n-1)*A023037(n) = (binomial(2*n-1,n)-n)*(n^n-1)/(n-1).

A332653 a(n) = (1/n) * Sum_{k=1..n} n^(k/gcd(n, k)).

Original entry on oeis.org

1, 2, 5, 19, 157, 1306, 19609, 266372, 5321721, 101001214, 2593742461, 61920391842, 1941507093541, 56984643437138, 2076518238897649, 72340172854919941, 3041324492229179281, 121440691499123469858, 5784852794328402307381, 262799364106291328009626
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [(1/n)*&+[n^(k div Gcd(n,k)):k in [1..n]]:n in [1..21]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[(1/n) Sum[n^(k/GCD[n, k]), {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, n^(k - 1), 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = (1/n) * Sum_{k=1..n} n^(lcm(n, k)/n).
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} n^(k-1).
a(n) = A332652(n) / n.

A368534 a(n) = Sum_{k=1..n} binomial(k+1,2) * n^(n-k).

Original entry on oeis.org

0, 1, 5, 24, 146, 1215, 13431, 186816, 3130436, 61291125, 1371742105, 34522712136, 964626945558, 29621465864627, 991330604373851, 35906022352657920, 1399219698628043016, 58367293868445147657, 2594796705962971336125, 122463905297217627859000
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k+1,2]n^(n-k),{k,n}],{n,0,20}] (* Harvey P. Dale, May 14 2025 *)
  • PARI
    a(n) = sum(k=1, n, binomial(k+1, 2)*n^(n-k));

Formula

a(n) = [x^n] x/((1-n*x) * (1-x)^3).
a(n) = n * (2*n^(n+1) - n^3 - n^2 + n - 1)/(2 * (n-1)^3) for n > 1.

A068742 Largest power of n! which divides (n^n)!.

Original entry on oeis.org

1, 1, 8, 13060694016, 2079483819621516594237312893208982470178235671604741236585936787960152492743230443701290222268785125031295963705114624
Offset: 0

Views

Author

Henry Bottomley, Feb 26 2002

Keywords

Examples

			a(3)=13060694016 since (3^3)!=27!=10888869450418352160768000000 can be divided by 3!=6 thirteen times and 6^13=13060694016.
		

Crossrefs

Programs

  • PARI
    for(n=2,10,p=1:f=(n^n)!:while(f%p==0,p=p*n!):print1(p/n!","))

Formula

For p prime, a(p)=(p!)^((p^p-1)/(p-1))

Extensions

More terms from Ralf Stephan, Mar 31 2003

A077385 Triangle read by rows in which n-th row contains 2n-1 terms starting from n^0 to n^(n-1) in increasing order and then in decreasing order to n^0.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 9, 3, 1, 1, 4, 16, 64, 16, 4, 1, 1, 5, 25, 125, 625, 125, 25, 5, 1, 1, 6, 36, 216, 1296, 7776, 1296, 216, 36, 6, 1, 1, 7, 49, 343, 2401, 16807, 117649, 16807, 2401, 343, 49, 7, 1, 1, 8, 64, 512, 4096, 32768, 262144, 2097152, 262144, 32768, 4096, 512, 64, 8, 1
Offset: 1

Views

Author

Amarnath Murthy, Nov 06 2002

Keywords

Examples

			Irregular triangle begins as:
  1;
  1, 2,  1;
  1, 3,  9,   3,    1;
  1, 4, 16,  64,   16,     4,      1;
  1, 5, 25, 125,  625,   125,     25,     5,    1;
  1, 6, 36, 216, 1296,  7776,   1296,   216,   36,   6,  1;
  1, 7, 49, 343, 2401, 16807, 117649, 16807, 2401, 343, 49, 7, 1;
		

Crossrefs

Programs

  • Magma
    A077385:= func< n,k | k lt n select n^k else n^(2*n-k-2) >;
    [A077385(n,k): k in [0..2*n-2], n in [1..12]]; // G. C. Greubel, Sep 21 2022
    
  • Maple
    A077385 := proc(n,k) if k < n then n^k ; else n^(2*n-k-2) ; fi ; end: for n from 1 to 10 do for k from 0 to 2*n-2 do printf("%d, ",A077385(n,k)) ; od : od : # R. J. Mathar, Jul 03 2007
  • Mathematica
    Table[Join[n^Range[0,n-1],n^Range[n-2,0,-1]],{n,8}]//Flatten (* Harvey P. Dale, Oct 13 2017 *)
  • SageMath
    def A077385(n,k): return n^k if (kA077385(n,k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Sep 21 2022

Formula

T(n, k) = n^k for k < n, otherwise n^(2*n-k-2), for n >= 1, 0 <= k <= 2*n-2.
From G. C. Greubel, Sep 21 2022: (Start)
T(n, 0) = T(n, 2*n-2) = 1.
T(n, n-1) = A000169(n).
T(n, n) = A000272(n).
T(n, 2*n-2-k) = T(n, k).
Sum_{k=0..n-1} T(n, k) = A023037(n).
Sum_{k=0..n-2} T(n, k) = A060072(n).
Sum_{k=0..2*n-2} T(n, k) = A077386(n) = 2*A060072(n) + A000169(n), n > 1. (End)

Extensions

More terms from R. J. Mathar, Jul 03 2007

A117667 a(n) = n^n-n^(n-1)-n^(n-2)-n^(n-3)-...-n^3-n^2-n.

Original entry on oeis.org

1, 2, 15, 172, 2345, 37326, 686287, 14380472, 338992929, 8888888890, 256780503551, 8105545862052, 277635514376233, 10257237069745862, 406615755353655135, 17216961135462248176, 775537745518440716417
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 11 2006

Keywords

Examples

			a(3) = 3^3-3^2-3 = 27-9-3 = 15.
		

Crossrefs

Cf. A000312 (n^n), A023037 (1+n+n^2+...n^(n-1)),

Programs

  • Maple
    a:=n->n^n-sum(n^j,j=1..n-1): seq(a(n),n=1..19); # Emeric Deutsch, Apr 16 2006
  • Mathematica
    s[n_] := Sum[n^i, {i, 1, n - 1}]; Table[n^n - s[n], {n, 17}] (* Carlos Eduardo Olivieri, Apr 14 2015 *)
    f[n_] := ((n - 2) n^n + n)/(n - 1); f[1] = 1; Array[f, 18] (* Robert G. Wilson v, Apr 15 2015 *)

Formula

a(n) = A000312(n) - A023037(n) + 1. - Michel Marcus, Apr 14 2015
A191690(n)+1. - Robert G. Wilson v, Apr 16 2015

A344431 a(n) = Sum_{k=1..n} mu(k) * n^(k - 1).

Original entry on oeis.org

1, -1, -11, -19, -654, 6439, -103298, -233543, -479042, 999089891, -23581102192, -56760341915, -23425343599215, 736752260240319, 31008836538146011, 76278687880642289, -48483493990740616866, -121045054967668089989, -104414952870932959886007
Offset: 1

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * n^(k-1), {k,1,n}]; Array[a, 20] (* Amiram Eldar, May 19 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*n^(k-1));

A119758 Numerator of Sum_{k=1..n} k^n/n^k.

Original entry on oeis.org

1, 3, 20, 225, 3789, 89341, 2821552, 115377921, 5939637425, 375840753541, 28641787322796, 2583828842108449, 271949027324094925, 32986652806128680205, 4563200871898056653504, 713455071424061222336513
Offset: 1

Views

Author

Alexander Adamchuk, Jun 18 2006, Jun 25 2006

Keywords

Comments

a(p-1) is divisible by prime p>2. a(p) is divisible by ((p+1)/2)^2 for prime p>2.
Denominator of Sum[k^n/n^k,{k,1,n}] is equal to n^(n-1) = A000169(n). - Alexander Adamchuk, Jun 27 2006

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[k^n/n^k,{k,1,n}]],{n,1,20}]
    Table[Sum[k^n/n^k,{k,1,n}]*n^(n-1),{n,1,50}] (* Alexander Adamchuk, Jun 27 2006 *)
  • PARI
    a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ Michel Marcus, May 31 2022

Formula

a(n) = numerator(Sum_{k=1..n} k^n/n^k).
a(n) = n^(n-1)*(Sum_{k=1..n} k^n/n^k). - Alexander Adamchuk, Jun 27 2006
a(2m) is divisible by 2m+1 for integer m>0. a(2m-1) is divisible by m^2 for integer m>0. - Alexander Adamchuk, Jun 27 2006

A125571 Least prime factor of Sum_{k=0..n-1} n^k.

Original entry on oeis.org

3, 13, 5, 11, 7, 29, 3, 7, 11, 15797, 5, 53, 3, 11, 17, 10949, 7, 109912203092239643840221, 3, 43, 23, 461, 5, 11, 3, 109, 5, 59, 7, 568972471024107865287021434301977158534824481, 3, 67, 5, 31, 13, 149, 3, 7, 11, 83, 13, 173, 3, 19, 47
Offset: 2

Views

Author

Axel Harvey, Jan 02 2007

Keywords

Comments

The sequence of largest prime factors of numbers generated by the same sum is probably identical to sequence A006486, since (n^n - 1)/(1 + n^2 + ... + n^(n-1)) = n-1.

Examples

			The sum 1 + 4 + 4^2 + 4^3 = 85 = 5 * 17 so the third term is 5.
		

Crossrefs

Cf. A006486.
Least prime factors of A023037.

Programs

  • Mathematica
    Table[FactorInteger[Sum[n^k,{k,0,n-1}]][[1,1]],{n,2,46}] (* James C. McMahon, Dec 18 2024 *)
  • PARI
    a(n) = factor(sum(k=0, n-1, n^k))[1, 1]; \\ Michel Marcus, Aug 20 2013

Extensions

More terms from Michel Marcus, Aug 20 2013
Previous Showing 21-30 of 36 results. Next