cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A069104 Numbers m such that m divides Fibonacci(m+1).

Original entry on oeis.org

1, 2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 323, 337, 347, 353, 367, 373, 377, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

Equals A003631 union A069107.
Let u(1)=u(2)=1 and (m+2)*u(m+2) = (m+1)*u(m+1) + m*u(m); then sequence gives values of k such that u(k) is an integer.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a069104 n = a069104_list !! (n-1)
    a069104_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod (drop 2 a000045_list) [1..]
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Mathematica
    Select[Range[6! ],IntegerQ[Fibonacci[ #+1]/# ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
    Select[Range[600],Mod[Fibonacci[#+1],#]==0&] (* Harvey P. Dale, Feb 24 2025 *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[1,1]==0 \\ Charles R Greathouse IV, Feb 03 2014

A298685 Numbers i such that Fibonacci(i) is divisible by i, i+1, i+2, and i+3.

Original entry on oeis.org

540, 1200, 1620, 3060, 5580, 9180, 9900, 12600, 13440, 13680, 18300, 19440, 19800, 21000, 24480, 36900, 43200, 49680, 50220, 54120, 57240, 61560, 65880, 81180, 83700, 103680, 104160, 154080, 155520, 156060, 156240, 202440, 229320, 252000, 279000, 298200, 302940
Offset: 1

Views

Author

Alex Ratushnyak, Jan 24 2018

Keywords

Comments

A subsequence of A298684.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Function[{i, j}, AllTrue[i + Range[0, 3], Divisible[j, #] &]] @@ {#, Fibonacci@ #} &] (* Michael De Vlieger, Jan 28 2018 *)
  • PARI
    isone(n, k) = !(fibonacci(n) % (n+k));
    isok(n) = isone(n,0) && isone(n,1) && isone(n,2) && isone(n,3); \\ Michel Marcus, Jan 29 2018

A298686 Numbers i such that Fibonacci(i) is divisible by i+k for k=0,1,2,3,4.

Original entry on oeis.org

13440, 19440, 19800, 24480, 49680, 61560, 104160, 229320, 298200, 311040, 329400, 436800, 471240, 600600, 1202040, 1299600, 1468800, 1564920, 1702800, 2031120, 2352240, 2402400, 2499840, 2762760, 2805600, 2937600, 2962080, 3150840, 3262680, 3405600, 3843840
Offset: 1

Views

Author

Alex Ratushnyak, Jan 24 2018

Keywords

Comments

A subsequence of A298685.

Crossrefs

Programs

  • PARI
    isone(n, k) = !(fibonacci(n) % (n+k));
    isok(n) = isone(n,0) && isone(n,1) && isone(n,2) && isone(n,3) && isone(n,4); \\ Michel Marcus, Jan 28 2018

Extensions

More terms from Alois P. Heinz, Jan 25 2018

A263112 a(n) = F(F(n)) mod n, where F = Fibonacci = A000045.

Original entry on oeis.org

0, 1, 1, 2, 0, 3, 2, 2, 1, 5, 1, 0, 8, 13, 10, 2, 12, 15, 5, 10, 1, 1, 1, 0, 0, 25, 1, 2, 5, 15, 27, 2, 10, 33, 20, 0, 1, 1, 34, 10, 40, 21, 18, 2, 10, 1, 1, 0, 1, 25, 1, 2, 16, 21, 5, 26, 37, 1, 7, 0, 33, 27, 1, 2, 40, 21, 5, 2, 1, 15, 1, 0, 46, 1, 25, 2, 68
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n), n)[1, 2]:
    seq(a(n), n=1..80);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], n][[1, 2]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)

Formula

a(n) = A007570(n) mod n.

A298687 Numbers i such that Fibonacci(i) is divisible by i+k for k=0..5.

Original entry on oeis.org

13440, 19440, 329400, 600600, 2499840, 3150840, 5590200, 7660800, 69069000, 83980800, 96049800, 98385840, 175472640, 179663400, 237484800, 320498640, 330663600, 375396840, 404351640, 406380240, 429660000, 437940000, 505234800, 574585200, 635980800
Offset: 1

Views

Author

Alex Ratushnyak, Jan 24 2018

Keywords

Comments

A subsequence of A298686.

Crossrefs

Programs

  • Python
    p0 = 0
    p1 = 1
    for i in range(1,1000000):
      if p1 % i == 0 and p1 % (i+1) == 0 and p1 % (i+2) == 0:
         if p1 % (i+3) == 0 and p1 % (i+4) == 0 and p1 % (i+5) == 0:  print(i)
      p0, p1 = p1, p0+p1

Extensions

a(9)-a(25) from Chai Wah Wu, Jan 27 2018

A127787 Numbers n such that F(n) divides F(F(n)), where F(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
Offset: 1

Views

Author

Alexander Adamchuk, May 13 2007

Keywords

Comments

It is known that for n > 2 Fibonacci(n) divides Fibonacci(m) if and only if n divides m. Therefore if the term "2" is omitted this is identical to A023172, which see for further information. - Stefan Steinerberger, Dec 20 2007

Examples

			12 is a term because F(12) = 144 divides F(F(12)) = F(144) = 555565404224292694404015791808.
		

Crossrefs

Cf. A023172. Cf. also A000045 = Fibonacci(n), A007570 = F(F(n)), where F is a Fibonacci number, A023172 = numbers n such that n divides Fibonacci(n).
Cf. A263101.

Programs

  • Maple
    with(combinat): a:=proc(n) if type(fibonacci(fibonacci(n))/fibonacci(n), integer) then n else end if end proc: seq(a(n),n=1..40); # Emeric Deutsch, Aug 24 2007

Extensions

Edited by N. J. A. Sloane, Dec 22 2007

A159231 Primes p such that 8*p^2-2*p-1 divides Fibonacci(p).

Original entry on oeis.org

37, 97, 577, 727, 1297, 3037, 3067, 4447, 4567, 5557, 7507, 7867, 8647, 9067, 9157, 12967, 17257, 20107, 20407, 21787, 22147, 23677, 25447, 27817, 28687, 29347, 30187, 32587, 33487, 35617, 38377, 42157, 42667, 42967, 43207, 45697, 46447, 47497, 49477
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2009

Keywords

Crossrefs

Subsequence of A159259. Supersequence of A215158.

Programs

  • Magma
    [p : p in PrimesUpTo(49477) | IsZero(Fibonacci(p) mod (8*p^2-2*p-1))]; // Arkadiusz Wesolowski, Nov 09 2013
    
  • Mathematica
    Select[Prime@Range[5084], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
  • PARI
    forprime(p=2, 49477, if(Mod(fibonacci(p), 8*p^2-2*p-1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013

A159259 Positive numbers n such that 8*n^2-2*n-1 divides Fibonacci(n).

Original entry on oeis.org

27, 37, 97, 577, 687, 727, 777, 807, 1297, 1707, 1917, 2067, 2487, 2787, 2977, 3027, 3037, 3067, 3277, 3367, 3417, 3507, 3837, 4047, 4257, 4377, 4447, 4567, 4717, 5137, 5557, 5637, 5677, 5917, 5967, 6057, 6187, 6327, 7077, 7087, 7357, 7407, 7507, 7597
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 07 2009

Keywords

Comments

The prime numbers of this sequence are in A159231.

Crossrefs

Programs

  • Magma
    [n : n in [1..7597] | IsZero(Fibonacci(n) mod (8*n^2-2*n-1))] // Arkadiusz Wesolowski, Nov 09 2013
    
  • Mathematica
    Select[Range[7597], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
  • PARI
    for(n=1, 7597, if(Mod(fibonacci(n), 8*n^2-2*n-1)==0, print1(n, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013

A219612 Numbers k that divide the sum of the first k Fibonacci numbers (beginning with F(0)).

Original entry on oeis.org

1, 4, 6, 9, 11, 19, 24, 29, 31, 34, 41, 46, 48, 59, 61, 71, 72, 79, 89, 94, 96, 100, 101, 106, 109, 120, 129, 131, 139, 144, 149, 151, 166, 179, 181, 191, 192, 199, 201, 211, 214, 216, 220, 226, 229, 239, 240, 241, 249, 251, 269, 271, 274, 281, 288, 311
Offset: 1

Views

Author

Alex Ratushnyak, May 03 2013

Keywords

Comments

Numbers k such that A000045(k+1) == 1 (mod k). - Robert Israel, Oct 13 2015

Examples

			Sum of first 6 Fibonacci numbers is 0+1+1+2+3+5 = 12. Because 6 divides 12, 6 is in the sequence.
		

Crossrefs

Programs

  • Maple
    fmod:= proc(a, b) local A, n, f1, f2, f;
      uses LinearAlgebra[Modular];
      A:= Mod(b, <<1, 1>|<1, 0>>, integer[8]);
      MatrixPower(b, M, a)[1, 2];
    end proc:
    1, op(select(t -> fmod(t+1,t) = 1, [$2..10^4])); # Robert Israel, Oct 13 2015
  • Mathematica
    okQ[n_] := n == 1 || Mod[Fibonacci[n+1], n] == 1;
    Select[Range[1000], okQ] (* Jean-François Alcover, Feb 04 2023 *)
  • PARI
    lista(nn) = {sf = 0; for (n=0, nn, sf += fibonacci(n); if (sf % (n+1) == 0, print1(n+1, ", ")););} \\ Michel Marcus, Jun 05 2013
  • Python
    sum_, prpr, prev = 0, 0, 1
    for i in range(1, 1000):
      sum_ += prpr
      if sum_ % i == 0:  print(i, end=', ')
      prpr, prev = prev, prpr+prev
    

Formula

a(n) = A101907(n) + 1. - Altug Alkan, Dec 29 2015

A352747 Array read by ascending antidiagonals. A(n, k) = F(k, n) mod n for n >= 1 and k >= 0, where F(n, k) = A352744(n, k) are the Fibonacci numbers, A(0, k) = 1 for k >= 0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 1, 3, 1, 2, 0, 0, 1, 5, 3, 0, 1, 1, 0, 1, 1, 1, 3, 3, 0, 0, 0, 1, 5, 0, 3, 3, 2, 2, 1, 0, 1, 3, 2, 6, 5, 3, 1, 1, 0, 0, 1, 4, 1, 7, 5, 1, 3, 0, 0, 1, 0, 1, 0, 9, 8, 4, 4, 3, 3, 3, 2, 0, 0, 1, 5, 1, 4, 6, 1, 3, 5, 3, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Peter Luschny, Apr 08 2022

Keywords

Comments

This array aims the study of the divisibility properties of the Fibonacci numbers A352744. The identity F(n, k) = (-1)^k*F(1 - n, -k) from A352744 shows that negative indices do not add to the divisibility properties of F(n, k).
All rows A(n, .) are pure periodic sequences. The length of the periods is given by (1, A270313). For n > 0 the length of the period of row A(n, .) is <= n.
The period length is 1 for n in (1, A023172) and n for n in (1, A074215), as observed by Robert Israel in A270313. In particular, if n is a power of 2 or a prime (A174090), then the period length is n.
The indices of the zero-free rows are in A353280. A zero-free row A(n, .) means that n will not divide F(k, n) whatever value k takes. For that it is sufficient to check that period(A(n, .)) is zero-free.
If period(A(n, .)) = [k | 0 <= k < n] we call n a 'Fibonacci friend'. In other words, in this case F(k, n) mod n = k for 0 <= k < n. A Fibonacci friend does not have to be prime (since 1 is a Fibonacci friend), but if it is prime then it is congruent to {1, 4} mod 5 (A045468), and all such primes are Fibonacci friends.
To say that n is a Fibonacci friend is equivalent to saying that A(n, n) = 0 and that n divides F(n, n). Fibonacci friends are the indices of the zeros in A002752.
Integers n > 0 that divide Sum{k=0..n-1} (F(k, n) mod n) are congruent to {0, 1, 3, 5} mod 6 (A301729).

Examples

			Array starts (periods are indicated with () ):
[n\k] 0   1   2   3   4  5  6   7   8   9  10  11  12
----------------------------------------------------------
[ 0] (1), 1,  1,  1,  1, 1, 1,  1,  1,  1,  1,  1,  1, ...
[ 1] (0), 0,  0,  0,  0, 0, 0,  0,  0,  0,  0,  0,  0, ...
[ 2] (1,  0), 1,  0,  1, 0, 1,  0,  1,  0,  1,  0,  1, ...
[ 3] (1,  0,  2), 1,  0, 2, 1,  0,  2,  1,  0,  2,  1, ...
[ 4] (2,  1,  0,  3), 2, 1, 0,  3,  2,  1,  0,  3,  2, ...
[ 5] (3), 3,  3,  3,  3, 3, 3,  3,  3,  3,  3,  3,  3, ...
[ 6] (5,  1,  3), 5,  1, 3, 5,  1,  3,  5,  1,  3,  5, ...
[ 7] (1,  0,  6,  5,  4, 3, 2), 1,  0,  6,  5,  4,  3, ...
[ 8] (5,  2,  7,  4,  1, 6, 3,  0), 5,  2,  7,  4,  1, ...
[ 9] (3,  1,  8,  6,  4, 2, 0,  7,  5), 3,  1,  8,  6, ...
[10] (4,  9), 4,  9,  4, 9, 4,  9,  4,  9,  4,  9,  4, ...
[11] (0,  1,  2,  3,  4, 5, 6,  7,  8,  9, 10), 0,  1, ...
[12] (5), 5,  5,  5,  5, 5, 5,  5,  5,  5,  5,  5,  5, ...
		

Crossrefs

Programs

  • Maple
    f := n -> combinat:-fibonacci(n + 1):
    F := proc(n, k) option remember; (n-1)*f(k-1) + f(k) end:
    A := (n, k) -> ifelse(n = 0, 1, modp(F(k, n), n)):
    for n from 0 to 12 do seq(A(n, k), k = 0..10) od;
  • Mathematica
    F[n_, k_] := (n - 1)*Fibonacci[k] + Fibonacci[k + 1];
    A[n_, k_] := If[n == 0, 1, Mod[F[k, n], n]];
    Table[A[n, k], {n, 0, 12}, {k, 0, 10}] // TableForm
  • SageMath
    def F(n, k): return (n - 1)*fibonacci(k) + fibonacci(k + 1)
    def A(n,k): return mod(F(k, n), n)
    for n in range(13): print([A(n,k) for k in range(13)])

Formula

A(n, 0) = A(n, n) = A002752(n).
Clearly 0 <= A(n, k) < n for all k and n > 0.
Previous Showing 11-20 of 63 results. Next