cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A190478 a(n) is the smallest prime prime(k) > a(n-1) such that the n numbers 2*prime(j)+3, j=k to k+n-1, are all prime.

Original entry on oeis.org

2, 5, 13, 3767, 19913, 726109, 4827859, 59069473, 179993463679, 2280987436223
Offset: 1

Views

Author

Pierre CAMI, May 11 2011

Keywords

Comments

This essentially searches for blocks of n consecutive primes of the form A023204 (see also A089530) with a minimum of the primes in the block set by the previous entry in the sequence. - R. J. Mathar, Jun 02 2011
Any further terms are > 10^13. - Lucas A. Brown, Mar 17 2024

Examples

			For n=1, 2 is prime and 2*2+3=7 is prime so a(1)=2.
For n=2, 5,7 are consecutive primes 2*5+3 and 2*7+3 are primes so a(2)=5 as 5 is the least such prime > 2.
For n=3, 13,17,19 are consecutive primes 2*13+3, 2*17+3, 2*19+3 are primes so a(3)=13 as 13 is the least such prime > 5.
		

Crossrefs

Cf. A023204.

Programs

  • Maple
    isA023204 := proc(n) isprime(n) and isprime(2*n+3) ; end proc:
    A190478idx := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do krun := true; for k from a to a+n-1 do if not isA023204(ithprime(k)) then krun := false; break; end if; end do: if krun then return a; end if; end do: end if; end proc:
    A190478 := proc(n) ithprime( A190478idx(n)) ; end proc: # R. J. Mathar, Jun 02 2011
  • PARI
    old(p,k)=while(k--,p=precprime(p-1));p;
    n=1;k=0;forprime(p=2,4e9,if(isprime(p<<1+3),if(k++==n,print1(old(p,n)", ");k--;n++),k=0)) \\ Charles R Greathouse IV, May 11 2011

Extensions

a(8) from Charles R Greathouse IV, May 11 2011
a(9)-a(10) from Lucas A. Brown, Mar 17 2024

A230225 Primes p such that 2*p+1 and 2*p+3 are not prime.

Original entry on oeis.org

31, 37, 59, 61, 71, 79, 101, 103, 107, 109, 149, 151, 163, 181, 211, 241, 257, 263, 271, 311, 313, 317, 331, 347, 367, 373, 389, 401, 421, 433, 449, 457, 461, 479, 499, 521, 541, 569, 571, 577, 587, 601, 619, 631, 661, 673, 677, 691, 701, 709, 727, 733, 751
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2013

Keywords

Examples

			31 is in the sequence because 2*31+1=63 and 2*31+3=65 are not prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500)|not IsPrime(2*p+1) and not IsPrime(2*p+3)];
  • Mathematica
    Select[Range[10^3], PrimeQ[#]&&!PrimeQ[2 # + 1]&&!PrimeQ[2 # + 3]&]
    Select[Prime[Range[200]],NoneTrue[2#+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 19 2021 *)

A243630 Primes p such that 2*p^3 - 3 is also prime.

Original entry on oeis.org

2, 7, 11, 13, 47, 101, 107, 151, 163, 167, 251, 257, 401, 443, 467, 521, 571, 641, 653, 673, 797, 907, 911, 971, 983, 997, 1013, 1151, 1153, 1181, 1187, 1223, 1231, 1277, 1291, 1303, 1361, 1433, 1481, 1511, 1597, 1637, 1723, 1741, 1811, 1951, 2027, 2081, 2083, 2141, 2287, 2311
Offset: 1

Views

Author

Vincenzo Librandi, Jun 08 2014

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | IsPrime(2*p^3 - 3)];
  • Mathematica
    Select[Prime[Range[2500]], PrimeQ[2 #^3 - 3] &]

A290839 a(n) = smallest prime p such that 2p + 2n - 1 is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 13, 3, 2, 3, 2, 11, 3, 2, 5, 7, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 13, 7, 11, 5, 19, 3, 2, 3, 2, 5, 3, 2, 2, 7, 5, 5, 3, 2, 2, 7, 3, 2, 13, 3, 2, 3, 2, 7, 3, 2
Offset: 0

Views

Author

XU Pingya, Aug 12 2017

Keywords

Crossrefs

Cf. A067076 (indices n at which a(n) = 2).

Programs

  • Mathematica
    Table[j=0; found=False; While[!found, j++; found=PrimeQ[2Prime[j]+2n-1]]; Prime[j], {n, 85}]
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p+2*n-1), p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 12 2017

Formula

a(-n) = A290838(n+1). - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A349327 Primes p such that 2*p^2 is a term of A179993.

Original entry on oeis.org

2, 3, 7, 13, 43, 127, 211, 293, 743, 757, 797, 811, 1429, 1597, 1721, 2087, 2113, 2239, 2269, 2297, 2381, 2423, 2647, 3079, 3121, 3221, 3863, 4229, 4271, 4957, 5209, 5333, 5923, 6299, 6691, 7127, 7237, 7349, 7757, 7853, 8329, 8513, 8539, 8807, 9127, 9311, 9631, 9661
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2021

Keywords

Comments

The numbers of the form 2*p^2 where p is a term of this sequence are the only nonsquarefree terms of A179993.
Equivalently, primes p such that p^2 - 2 and 2*p^2 - 1 are also primes, or primes p such that p^2 - 2 is a term of A023204.

Examples

			2 is a term since 2*2^2 = 8 = 1*8 = 2*4 is a term of A179993: 8 - 1 = 7 and 4 - 2 = 2 are both primes.
3 is a term since 2*3^2 = 18 = 1*18 = 2*9 = 3*6 is a term of A179993: 18 - 1 = 17, 9 - 2 = 7 and 6 - 3 = 3 are all primes.
		

Crossrefs

Intersection of A062326 and A106483.
The prime terms of A225098.

Programs

  • Mathematica
    q[n_] := AllTrue[{n, n^2 - 2, 2*n^2 - 1}, PrimeQ]; Select[Range[10000], q]
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A349327(): # generator of terms
        n = 2
        while True:
            if isprime(n**2-2) and isprime (2*n**2-1): yield n
            n = nextprime(n)
    A349327_list = list(islice(A349327(),20)) # Chai Wah Wu, Nov 15 2021

A153145 Primes p such that 2*p + 19 is also prime.

Original entry on oeis.org

2, 5, 11, 17, 41, 47, 59, 89, 107, 131, 137, 149, 167, 191, 251, 269, 311, 317, 389, 401, 419, 431, 461, 467, 479, 521, 587, 599, 641, 677, 797, 809, 839, 857, 929, 941, 947, 977, 1031, 1061, 1097, 1109, 1181, 1187, 1229, 1301, 1307, 1319, 1361, 1367, 1409
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2008

Keywords

Examples

			For n=2, 2*n+19 = 23 is prime, so 2 is in the sequence.
		

Crossrefs

Cf. A153143 (m and 2*m+19 are both prime), A005384 (Sophie Germain primes, m and 2*m+1 are both prime), A023204 (m and 2*m+3 are both prime), A023205 (m and 2*m+5 are both prime), A023206 (m and 2*m+7 are both prime), A023207 (m and 2*m+9 are both prime).

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsPrime(2*p+19)];
  • Mathematica
    Select[Prime[Range[2000]],PrimeQ[2 # + 19] &] (* Vincenzo Librandi, Oct 20 2012 *)

Extensions

Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008

A171518 Primes p such that 3*p-+8 are primes.

Original entry on oeis.org

5, 7, 13, 17, 53, 73, 83, 113, 127, 157, 193, 223, 277, 347, 367, 433, 613, 647, 673, 743, 797, 907, 937, 1117, 1217, 1373, 1427, 1483, 1543, 1597, 1637, 1667, 1877, 1933, 2027, 2237, 2297, 2447, 2647, 2687, 2843, 3083, 3137, 3613, 3797, 4073, 4463, 4483
Offset: 1

Views

Author

Keywords

Examples

			5 is in the sequence since 3*5-8=7 and 3*5+8=23 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[7! ]],PrimeQ[3*#-8]&&PrimeQ[3*#+8]&]
    Select[Prime[Range[700]],AllTrue[3#+{8,-8},PrimeQ]&] (* Harvey P. Dale, Feb 10 2025 *)

A238699 Primes p such that 2p + 3 and 4p + 3 are both prime.

Original entry on oeis.org

2, 5, 7, 17, 19, 47, 67, 89, 157, 227, 229, 307, 349, 439, 467, 487, 509, 599, 647, 797, 929, 1039, 1187, 1217, 1237, 1259, 1307, 1427, 1447, 1567, 1789, 2027, 2309, 2467, 2539, 2707, 2789, 2819, 3167, 3457, 3499, 3659, 3877, 3919, 4057, 4079, 4157, 4289, 4297
Offset: 1

Views

Author

Ilya Lopatin, Mar 03 2014, following a suggestion by Juri-Stepan Gerasimov

Keywords

Comments

Intersection of A023204 and A023213.
Primes in A115334.

Examples

			89 is in the sequence because 2*89 + 3 = 181 and 4*89 + 3 = 359 are both prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4500) | IsPrime(2*p+3) and IsPrime(4*p+3)]; // Bruno Berselli, Mar 03 2014
    
  • Mathematica
    Select[Prime[Range[600]],AllTrue[{2#+3,4#+3},PrimeQ]&] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    select(p->isprime(2*p+3)&&isprime(4*p+3), primes(1000)) \\ Charles R Greathouse IV, Mar 06 2014

Extensions

Edited by Bruno Berselli, Mar 03 2014

A247010 Primes p such that (p-3)/2 and 2*p+3 are both prime.

Original entry on oeis.org

7, 13, 17, 29, 89, 97, 137, 197, 229, 277, 337, 349, 397, 557, 617, 797, 929, 937, 1117, 1217, 1237, 1777, 2129, 2309, 2437, 2477, 2617, 2749, 2857, 2909, 3049, 3109, 3137, 3329, 3389, 4057, 4229, 4289, 4409, 5237, 5297, 5417, 5557, 5717, 5857, 6689
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2014

Keywords

Comments

A023204 INTERSECT A089531. After 7, all terms are obviously in A002144.
Conjecture: the sequence is infinite.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime((p-3)div 2) and IsPrime(2*p+3)];
    
  • Mathematica
    Select[Prime[Range[900]], And@@PrimeQ/@{(# - 3)/2, 2 # + 3} &]
  • PARI
    is(n)=isprime(n) && isprime(2*n+3) && isprime((n-3)\2) \\ Charles R Greathouse IV, Sep 09 2014
  • Sage
    def t(i): return 2*i+3
    [t(p) for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014
    

Formula

a(n) = 2*A023242(n) + 3. [Bruno Berselli, Sep 09 2014]

A258153 Numbers of the form p^2 + q with p, q and 2*p + 3 all prime.

Original entry on oeis.org

6, 7, 9, 11, 15, 17, 21, 23, 27, 28, 30, 32, 33, 35, 36, 38, 41, 42, 44, 45, 47, 48, 51, 52, 54, 56, 57, 60, 62, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 84, 86, 87, 90, 92, 93, 96, 98, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 120, 122, 126, 128, 131, 132, 134, 135, 138, 141
Offset: 1

Views

Author

Zhi-Wei Sun, May 22 2015

Keywords

Comments

The conjecture in A258141 asserts that any six consecutive positive integers contain at least a term of the current sequence.

Examples

			a(1) = 6 since 6 = 2^2 + 2 with 2 and 2*2+3 = 7 both prime.
a(2) = 7 since 7 = 2^2 + 3 with 2, 3, 2*2+3 all prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[Do[If[PrimeQ[2Prime[k]+3]&&PrimeQ[m-Prime[k]^2],n=n+1;Print[n," ",m];Goto[aa]],{k,1,PrimePi[Sqrt[m]]}];
    Label[aa];Continue,{m,1,141}]
    Module[{pp=40},Select[Union[#[[1]]^2+#[[2]]&/@Select[Tuples[ Prime[ Range[ pp]],2],PrimeQ[2#[[1]]+3]&]],#<=Prime[pp]-4&]] (* Harvey P. Dale, Jul 24 2021 *)
Previous Showing 21-30 of 31 results. Next