A357572
Expansion of e.g.f. sinh(sqrt(3) * (exp(x)-1)) / sqrt(3).
Original entry on oeis.org
0, 1, 1, 4, 19, 85, 406, 2191, 13105, 84190, 573121, 4127521, 31434184, 252388957, 2126998693, 18740283556, 172134162631, 1644920020417, 16324076578870, 167938152551491, 1787952325142341, 19667748794844550, 223217829954224029, 2610546296216999197
Offset: 0
-
a(n) = sum(k=0, (n-1)\2, 3^k*stirling(n, 2*k+1, 2));
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(3))-Bell_poly(n, -sqrt(3)))/(2*sqrt(3)));
A088312
Number of sets of lists (cf. A000262) with even number of lists.
Original entry on oeis.org
1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
-
def A088312_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( cosh(x/(1-x)) ).egf_to_ogf().list()
A088312_list(40) # G. C. Greubel, Dec 13 2022
A088313
Number of "sets of lists" (cf. A000262) with an odd number of lists.
Original entry on oeis.org
0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
-
my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
-
def A088313_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sinh(x/(1-x)) ).egf_to_ogf().list()
A088313_list(40) # G. C. Greubel, Dec 13 2022
A356572
Expansion of e.g.f. sinh( (exp(3*x) - 1)/3 ).
Original entry on oeis.org
0, 1, 3, 10, 45, 307, 2718, 26371, 265359, 2778976, 30916863, 372113623, 4873075056, 68908186765, 1037694932823, 16438615126282, 271972422548361, 4687666317874495, 84181305836224422, 1576083180118379527, 30757003280682603699, 624671260245315540568
Offset: 0
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[Sinh[(Exp[3*x] - 1)/3], {x, 0, m}], x]] (* Amiram Eldar, Oct 07 2022 *)
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh((exp(3*x)-1)/3))))
-
a(n) = sum(k=0, (n-1)\2, 3^(n-1-2*k)*stirling(n, 2*k+1, 2));
A121869
Monthly Problem 10791, first expression.
Original entry on oeis.org
-1, 1, 0, -5, -15, 104, 1827, 7893, -207000, -5646249, -47897675, 1479282600, 74711288407, 1396956334921, -21032523700672, -2719998717430365, -104158663871982343, -715846242343471272, 189941380201812700699, 14820744271258596866013, 507768838531742620183176
Offset: 0
-
List([0..25], n-> (-1)*Sum([0..n], k-> Stirling2(n,k)) *Sum([0..n], k-> (-1)^k*Stirling2(n,k)) ); # G. C. Greubel, Oct 08 2019
-
a:= func< n | (-1)*(&+[StirlingSecond(n,k): k in [0..n]])*(&+[ (-1)^k*StirlingSecond(n,k): k in [0..n]]) >;
[a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
-
with(combinat): seq(-bell(n)*BellB(n, -1), n = 0..25); # G. C. Greubel, Oct 08 2019
-
Table[-BellB[n]*BellB[n, -1], {n,0,25}] (* G. C. Greubel, Oct 08 2019 *)
-
a(n) = (-1)*sum(k=0,n, stirling(n,k,2))*sum(k=0,n, (-1)^k*stirling(n,k,2));
vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
-
[ -sum(stirling_number2(n, k) for k in (0..n))*sum((-1)^k* stirling_number2(n,k) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Oct 08 2019
A357617
Expansion of e.g.f. sinh( (exp(4*x) - 1)/4 ).
Original entry on oeis.org
0, 1, 4, 17, 88, 657, 6844, 83393, 1072880, 14242785, 197046964, 2895895345, 45930435016, 789930042865, 14628150636012, 287915593953889, 5950831121362656, 128180962018224833, 2868724306984850020, 66704877850797014353, 1613138176448134032440
Offset: 0
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[Sinh[(Exp[4*x] - 1)/4], {x, 0, m}], x]] (* Amiram Eldar, Oct 07 2022 *)
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh((exp(4*x)-1)/4))))
-
a(n) = sum(k=0, (n-1)\2, 4^(n-1-2*k)*stirling(n, 2*k+1, 2));
A357664
Expansion of e.g.f. sinh( (exp(2*x) - 1)/sqrt(2) )/sqrt(2).
Original entry on oeis.org
0, 1, 2, 6, 32, 220, 1592, 11944, 96000, 847120, 8209952, 86020704, 958326272, 11243157952, 138464594816, 1789358629504, 24250275913728, 344002396594432, 5092763802452480, 78443316497892864, 1253887341918199808, 20761127890765634560
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, apply(round, Vec(serlaplace(sinh((exp(2*x)-1)/sqrt(2))/sqrt(2)))))
-
a(n) = sum(k=0, (n-1)\2, 2^(n-1-k)*stirling(n, 2*k+1, 2));
A357665
Expansion of e.g.f. sinh( (exp(3*x) - 1)/sqrt(3) )/sqrt(3).
Original entry on oeis.org
0, 1, 3, 12, 81, 765, 7938, 85239, 963819, 11801862, 158533443, 2320621569, 36425289816, 604576791405, 10532817901791, 192197187209484, 3673078679995677, 73486862051182425, 1536507360834633666, 33482575797899354235, 758209049155176114807
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, apply(round, Vec(serlaplace(sinh((exp(3*x)-1)/sqrt(3))/sqrt(3)))))
-
a(n) = sum(k=0, (n-1)\2, 3^(n-1-k)*stirling(n, 2*k+1, 2));
A357666
Expansion of e.g.f. sinh( (exp(4*x) - 1)/2 )/2.
Original entry on oeis.org
0, 1, 4, 20, 160, 1872, 25024, 348224, 5055488, 78571776, 1332573184, 24695206912, 493816963072, 10492449771520, 234399640633344, 5480635606908928, 134015043318054912, 3427700843478056960, 91642829715498336256, 2556218693498006929408
Offset: 0
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh((exp(4*x)-1)/2)/2)))
-
a(n) = sum(k=0, (n-1)\2, 4^(n-1-k)*stirling(n, 2*k+1, 2));
A358837
Number of odd-length multiset partitions of integer partitions of n.
Original entry on oeis.org
0, 1, 2, 4, 7, 14, 28, 54, 106, 208, 399, 757, 1424, 2642, 4860, 8851, 15991, 28673, 51095, 90454, 159306, 279067, 486598, 844514, 1459625, 2512227, 4307409, 7357347, 12522304, 21238683, 35903463, 60497684, 101625958, 170202949, 284238857, 473356564, 786196353
Offset: 0
The a(1) = 1 through a(5) = 14 multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1,1,1}} {{2,2}} {{2,3}}
{{1},{1},{1}} {{1,1,2}} {{1,1,3}}
{{1,1,1,1}} {{1,2,2}}
{{1},{1},{2}} {{1,1,1,2}}
{{1},{1},{1,1}} {{1,1,1,1,1}}
{{1},{1},{3}}
{{1},{2},{2}}
{{1},{1},{1,2}}
{{1},{2},{1,1}}
{{1},{1},{1,1,1}}
{{1},{1,1},{1,1}}
{{1},{1},{1},{1},{1}}
The version for set partitions is
A024429.
These multiset partitions are ranked by
A026424.
The version for partitions is
A027193.
The version for twice-partitions is
A358824.
A001970 counts multiset partitions of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@Reverse/@IntegerPartitions[n],OddQ[Length[#]]&]],{n,0,10}]
-
P(v,y) = {1/prod(k=1, #v, (1 - y*x^k + O(x*x^#v))^v[k])}
seq(n) = {my(v=vector(n, k, numbpart(k))); (Vec(P(v,1)) - Vec(P(v,-1)))/2} \\ Andrew Howroyd, Dec 31 2022
Comments