cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A061599 Primes p such that the greatest prime divisor of p-1 is 5.

Original entry on oeis.org

11, 31, 41, 61, 101, 151, 181, 241, 251, 271, 401, 541, 601, 641, 751, 811, 1201, 1601, 1621, 1801, 2161, 2251, 3001, 4001, 4051, 4801, 4861, 6481, 7681, 8101, 8641, 9001, 9601, 9721, 11251, 14401, 15361, 16001, 19441, 21601, 21871, 22501, 23041, 24001
Offset: 1

Views

Author

Labos Elemer, Jun 13 2001

Keywords

Comments

Prime numbers n for which cos(2Pi/n) is an algebraic number of 5th degree. - Artur Jasinski, Dec 13 2006
The least significant digit of each term is one. - Harvey P. Dale, Jul 07 2024

Crossrefs

The 3rd in a family of sequences after A019434(=Fermat-primes) and A058383.

Programs

  • Mathematica
    Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]],1] == {5} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] (* Artur Jasinski, Dec 13 2006 *)
    Select[Prime[Range[3000]],Max[FactorInteger[#-1][[;;,1]]]==5&] (* Harvey P. Dale, Jul 07 2024 *)
  • PARI
    { default(primelimit, 167772161); n=0; forprime (p=3, 167772161, f=factor(p - 1)~; if (f[1, length(f)]==5, write("b061599.txt", n++, " ", p)) ) } \\ Harry J. Smith, Jul 25 2009
    
  • PARI
    list(lim)=my(v=List(), s, t); lim\=1; lim--; for(i=1, logint(lim\2, 5), t=2*5^i; for(j=0, logint(lim\t, 3), s=t*3^j; while(s<=lim, if(isprime(s+1), listput(v, s+1)); s<<=1))); Set(v) \\ Charles R Greathouse IV, Oct 29 2018

Formula

Primes of the form 2^a*3^b*5^c + 1 with a and c > 0.

A125867 Numbers k such that p=6k+1 is prime and cos(2*Pi/p) is an algebraic number of a 3-smooth degree, but not 2-smooth.

Original entry on oeis.org

1, 2, 3, 6, 12, 16, 18, 27, 32, 72, 81, 96, 128, 192, 216, 243, 432, 486, 576, 648, 1728, 2048, 2916, 3072, 6561, 8748, 23328, 24576, 34992, 55296, 78732, 104976, 124416, 131072, 139968, 165888, 196608, 248832, 294912, 331776, 442368, 839808
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Comments

Numbers k such that p=6k+1 is prime and the greatest prime divisor of p-1 is 3.

Crossrefs

Programs

  • Mathematica
    Do[If[Take[FactorInteger[EulerPhi[6n+1]][[ -1]], 1]=={3} && PrimeQ[6n+1],Print[n]],{n,1,100000}]

Extensions

Edited by Don Reble, Apr 24 2007

A307562 Numbers k such that both 6*k + 1 and 6*k + 7 are prime.

Original entry on oeis.org

1, 2, 5, 6, 10, 11, 12, 16, 17, 25, 26, 32, 37, 45, 46, 51, 55, 61, 62, 72, 76, 90, 95, 100, 101, 102, 121, 122, 125, 137, 142, 146, 165, 172, 177, 181, 186, 187, 205, 215, 216, 220, 237, 241, 242, 247, 257, 270, 276, 277, 282, 290, 291, 292, 296, 297, 310, 311, 312, 331, 332, 335, 347, 355, 356, 380, 381, 390
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 138 such numbers between 1 and 1000.
Prime pairs that differ by 6 are called "sexy" primes. Other prime pairs that differ by 6 are of the form 6n - 1 and 6n + 5.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd - c - d, 6cd + c + d - 1 or 6cd + c + d, that is, they are not (6c - 1)d - c - 1, (6c - 1)d - c, (6c + 1)d + c - 1 or (6c + 1)d + c.

Examples

			a(3) = 5, so 6(5) + 1 = 31 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

For the primes see A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024899 and A153218.
Cf. also A307561, A307563.

Programs

  • Mathematica
    Select[Range[400], AllTrue[6 # + {1, 7}, PrimeQ] &] (* Michael De Vlieger, Apr 15 2019 *)
  • PARI
    isok(n) = isprime(6*n+1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A263309 Numbers k such that p=6k+1 and q=6k+1 are primes.

Original entry on oeis.org

1, 2, 6, 10, 12, 17, 25, 30, 40, 45, 46, 47, 52, 55, 61, 62, 66, 96, 100, 101, 110, 121, 125, 131, 142, 151, 156, 172, 177, 186, 195, 200, 220, 221, 230, 237, 242, 255, 261, 282, 296, 305, 312, 331, 332, 356, 360, 367, 370, 380, 381, 382, 391, 425, 432, 446, 461, 465, 475, 495, 506, 510, 527, 530
Offset: 1

Views

Author

Zak Seidov, Oct 13 2015

Keywords

Comments

Subsequence of A024899.
The subsequence of primes in this sequence is A023256.

Crossrefs

Programs

  • Maple
    isA263309 := proc(n)
        if isprime(6*n+1) then
            if isprime(36*n+7) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    for n from 1 to 100 do
        if isA263309(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Oct 17 2015
  • Mathematica
    Select[Range[1000],PrimeQ[p=6*#+1]&& PrimeQ[q=6*p+1]&]
  • PARI
    isok(n) = isprime(p=6*n+1) && isprime(6*p+1); \\ Michel Marcus, Oct 17 2015

A061638 Primes p such that the greatest prime divisor of p-1 is 7.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 281, 337, 379, 421, 449, 491, 631, 673, 701, 757, 883, 1009, 1051, 1373, 1471, 2017, 2269, 2521, 2647, 2689, 2801, 3137, 3361, 3529, 4201, 4481, 5881, 6301, 7001, 7057, 7351, 7561, 7841, 8233, 8821, 10501, 10753, 12097
Offset: 1

Views

Author

Labos Elemer, Jun 13 2001

Keywords

Comments

Prime numbers n for which cos(2*Pi/n) is an algebraic number of 7th degree. - Artur Jasinski, Dec 13 2006

Examples

			For n = {4, 8, 9, 12}, a(n)-1 = {70, 210, 280, 420} = 7*{10, 30, 40, 60}.
		

Crossrefs

The 4th in a family of sequences after A019434(=Fermat-primes), A058383, A061599.

Programs

  • Mathematica
    Select[Prime[Range[2000]],FactorInteger[#-1][[-1,1]] ==7&]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    default(primelimit, 108864001); n=0; forprime (p=3, 108864001, f=factor(p - 1)~; if (f[1, length(f)]==7, write("b061638.txt", n++, " ", p))) \\ Harry J. Smith, Jul 25 2009
    
  • PARI
    list(lim)=my(v=List(), t, t5, t7); lim\=1; lim--; for(a=1, logint(lim\2, 7), t7=2*7^a; for(b=0, logint(lim\t7, 5), t5=5^b*t7; for(c=0, logint(lim\t5, 3), t=3^c*t5; while(t<=lim, if(isprime(t+1), listput(v, t+1)); t<<=1)))); Set(v) \\ Charles R Greathouse IV, Oct 29 2018

Formula

Primes of form 2^a*3^b*5^c*7^d + 1 with a and d > 1.

A173177 Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4.

Original entry on oeis.org

2, 5, 8, 14, 17, 20, 29, 32, 35, 38, 47, 50, 53, 62, 68, 74, 77, 80, 89, 95, 98, 104, 110, 113, 119, 134, 137, 140, 152, 155, 164, 167, 173, 182, 185, 188, 197, 203, 209, 215, 218, 227, 230, 242, 248, 260, 269, 272, 284, 287, 299
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR
second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 2 + 3 OR 3* 1 + 4 = 7;
2* 5 + 3 OR 3* 3 + 4 = 13;
2* 8 + 3 OR 3* 5 + 4 = 19;
2*14 + 3 OR 3* 9 + 4 = 31;
2*17 + 3 OR 3*11 + 4 = 37;
2*20 + 3 OR 3*13 + 4 = 43;
2*29 + 3 OR 3*19 + 4 = 61;
2*32 + 3 OR 3*21 + 4 = 67;
2*35 + 3 OR 3*23 + 4 = 73.
A034936 Numbers k such that 3k+4 is prime.
A002476 Primes of the form 6k+1.
A024899 Nonnegative integers k such that 6k+1 is prime.
2, 5, 8, 14, 17, 20, ... = (3*(4*A024899 - A034936) - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[300],PrimeQ[2#+3]&&Divisible[2#-1,3]&] (* Harvey P. Dale, Aug 25 2016 *)

Extensions

More terms from Harvey P. Dale, Aug 25 2016

A263310 Numbers n such that p=6*n+1, q=6*p+1 and r=6*q+1 are primes.

Original entry on oeis.org

10, 25, 55, 61, 101, 125, 156, 220, 221, 381, 391, 465, 475, 495, 576, 810, 891, 901, 975, 1060, 1145, 1396, 1430, 1630, 1650, 1726, 1795, 1811, 1881, 1885, 1915, 2196, 2265, 2335, 2391, 2405, 2456, 2536, 2575, 2636, 2651, 2820, 2911, 2915, 2951, 2965, 3051, 3211, 3245, 3335
Offset: 1

Views

Author

Zak Seidov, Oct 13 2015

Keywords

Comments

Subsequence of A263309 (and as such also of A024899).

Crossrefs

Programs

  • Maple
    isA263310 := proc(n)
        return isprime(6*n+1) and isprime(36*n+7) and isprime(216*n+43) ;
    end proc:
    for n from 1 to 3000 do
        if isA263310(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Oct 17 2015
  • Mathematica
    Select[Range[10000],PrimeQ[p=6*#+1]&& PrimeQ[q=6*p+1]&& PrimeQ[r=6*q+1]&]
  • PARI
    for(n=1, 1e4, if(isprime(p=6*n+1)&&isprime(q=6*p+1)&&isprime(6*q+1), print1(n", "))) \\ Altug Alkan, Oct 17 2015

A263311 Numbers n such that each of p=6*n+1, q=6*p+1, r=6*q+1 and s=6*r+1 is prime.

Original entry on oeis.org

10, 1060, 1795, 1885, 2965, 3245, 3335, 4065, 4325, 5015, 5875, 6985, 7605, 7905, 9785, 11315, 12045, 12360, 14390, 14970, 15285, 15500, 15885, 17195, 18220, 20670, 20695, 22160, 24915, 25645, 25955, 26025, 29410, 29910, 32925, 35530, 36280
Offset: 1

Views

Author

Zak Seidov, Oct 13 2015

Keywords

Comments

Each p is a starting prime of a complete generalized Cunningham chain p(k)=6*p(k-1)+1.
All terms are multiples of 5. Hence t = 6s+1 = 1555+7776n are always composite, and the chains are indeed "complete."
Subsequence of A263310 (and as such of A263309 and of A024899).

Crossrefs

Programs

  • Maple
    isA263311 := proc(n)
        return isprime(6*n+1) and isprime(36*n+7) and isprime(216*n+43) and isprime(1296*n+259) ;
    end proc:
    for n from 1 to 30000 do
        if isA263311(n) then
            printf("%d,",n);
        end if;
    end do; # R. J. Mathar, Oct 17 2015
  • Mathematica
    Select[Range[10,100000,5],PrimeQ[p=6*#+1]&&PrimeQ[q=6*p+1]&&PrimeQ[r=6*q+1]&&PrimeQ[s=6*r+1]&]
  • PARI
    for(n=1, 1e5, if(isprime(p=6*n+1) && isprime(q=6*p+1) && isprime(r=6*q+1) && isprime(6*r+1), print1(n", "))) \\ Altug Alkan, Oct 17 2015

A333721 Numbers k such that k + 1, 2k + 1, 3k + 1, 4k + 1, and 6k + 1 are all prime.

Original entry on oeis.org

1530, 4260, 25410, 26040, 78540, 111720, 174990, 211050, 214830, 395430, 403260, 409290, 459690, 487830, 512820, 711120, 779790, 910560, 1023750, 1135950, 1280370, 1312350, 1451520, 1464810, 1487070, 1563510, 1623360, 1698060, 1824330, 1933680, 2006340, 2097480
Offset: 1

Views

Author

Pedro Caceres, May 04 2020

Keywords

Comments

All terms are multiples of 6.
All terms are multiples of 30. - Robert Israel, Jun 17 2020

Examples

			25410 is in the sequence because 25411, 50821, 76231, 101641, 152461 are all prime.
		

Crossrefs

Programs

  • Maple
    select(t -> andmap(isprime, [t+1,2*t+1,3*t+1,4*t+1,6*t+1]), [seq(i,i=30..3*10^6,30)]); # Robert Israel, Jun 17 2020
  • PARI
    isok(m)={for(i=1, 6, if(i<>5&&!isprime(i*m+1), return(0))); 1}
    { forstep(n=0, 3*10^6, 6, if(isok(n), print1(n, ", "))) } \\ Andrew Howroyd, May 04 2020

A368202 Least k such that 6*n*k+1 is a prime.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 2, 1, 3, 1, 3, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 4, 1, 3, 3, 4, 5, 1, 1, 1, 2, 3, 2, 1, 1, 10, 4, 1, 1, 6, 1, 2, 5, 1, 1, 1, 2, 3, 1, 4, 1, 2, 1, 2, 1, 1, 4, 4, 1, 1, 2, 3, 7, 1, 6, 1, 2, 2, 2
Offset: 1

Views

Author

Robert Price, Dec 16 2023

Keywords

Crossrefs

A070850 lists the corresponding primes.

Programs

  • Mathematica
    A368202 = {};
    Do[k=1; While[!PrimeQ[9 n k+1], k++]; AppendTo[A368202, k], {n, 86}];
    A368202
  • PARI
    a(n) = my(k=1); while (!isprime(6*n*k+1), k++); k; \\ Michel Marcus, Dec 16 2023
Previous Showing 21-30 of 34 results. Next