cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 228 results. Next

A112964 Sum(mu(i)*sigma(j): i+j=n), with mu=A008683 and sigma=A000203.

Original entry on oeis.org

0, 1, 2, 0, 0, -6, -3, -12, -11, -13, -22, -19, -20, -30, -41, -15, -55, -24, -52, -41, -59, -24, -109, -22, -78, -42, -111, -26, -131, -2, -119, -75, -133, -8, -214, 7, -175, -68, -176, -17, -209, 14, -231, -73, -175, 45, -349, -11, -236, -20, -236, -53, -384, 68, -321, -56, -270, 1, -457, 41, -328, -48
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Examples

			a(5)=mu(1)*sigma(4)+mu(2)*sigma(3)+mu(3)*sigma(2)+mu(4)*sigma(1)
= 1*7 - 1*4 - 1*3 + 0*1 = 0.
		

Crossrefs

Programs

A127096 Triangle T(n,m) = A000012*A127094 read by rows.

Original entry on oeis.org

1, 3, 1, 6, 1, 1, 10, 1, 3, 1, 15, 1, 3, 1, 1, 21, 1, 3, 4, 3, 1, 28, 1, 3, 4, 3, 1, 1, 36, 1, 3, 4, 7, 1, 3, 1, 45, 1, 3, 4, 7, 1, 6, 1, 1, 55, 1, 3, 4, 7, 6, 6, 1, 3, 1, 66, 1, 3, 4, 7, 6, 6, 1, 3, 1, 1, 78, 1, 3, 4, 7, 6, 12, 1, 7, 4, 3, 1, 91, 1, 3, 4, 7, 6, 12, 1, 7, 4, 3, 1, 1, 105, 1, 3, 4, 7, 6, 12, 8, 7, 4, 3, 1, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007

Keywords

Comments

Consider A000012 as a lower-left all-1's triangle, and build the matrix product by multiplication with A127094 from the right.

Examples

			First few rows of the triangle are:
   1;
   3, 1,
   6, 1, 1;
  10, 1, 3, 1;
  15, 1, 3, 1, 1;
  21, 1, 3, 4, 3, 1;
  28, 1, 3, 4, 3, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A127093 := proc(n,m) if n mod m = 0 then m; else 0 ; fi; end:
    A127094 := proc(n,m) A127093(n, n-m+1) ; end:
    A127096 := proc(n,m) add( A127094(j,m),j=m..n) ; end:
    for n from 1 to 15 do for m from 1 to n do printf("%d,",A127096(n,m)) ; od: od: # R. J. Mathar, Aug 18 2009
  • Mathematica
    T[n_, m_] := Sum[1 + Mod[j, m - j - 1] - Mod[1 + j, m - j - 1], {j, m, n}];
    Table[T[n, m], {n, 1, 14}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2023 *)

Formula

T(n,m) = Sum_{j=m..n} A000012(n,j)*A127094(j,m) = Sum_{j=m..n} A127094(j,m).

Extensions

Edited and extended by R. J. Mathar, Aug 18 2009

A131383 Total digital sum of n: sum of the digital sums of n for all the bases 1 to n (a 'digital sumorial').

Original entry on oeis.org

1, 3, 6, 8, 13, 16, 23, 25, 30, 35, 46, 46, 59, 66, 75, 74, 91, 91, 110, 112, 125, 136, 159, 152, 169, 182, 195, 199, 228, 223, 254, 253, 274, 291, 316, 297, 334, 353, 378, 373, 414, 409, 452, 460, 475, 498, 545, 520, 557, 565, 598, 608, 661, 652, 693, 690
Offset: 1

Views

Author

Hieronymus Fischer, Jul 05 2007, Jul 15 2007, Jan 07 2009

Keywords

Comments

Sums of rows of the triangle in A138530. - Reinhard Zumkeller, Mar 26 2008

Examples

			5 = 11111(base 1) = 101(base 2) = 12(base 3) = 11(base 4) = 10(base 5). Thus a(5) = ds_1(5)+ds_2(5)+ds_3(5)+ds_4(5)+ds_5(5) = 5+2+3+2+1 = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[n + Total@ Map[Total@ IntegerDigits[n, #] &, Range[2, n]], {n, 56}] (* Michael De Vlieger, Jan 03 2017 *)
  • PARI
    a(n)=sum(i=2,n+1,vecsum(digits(n,i))); \\ R. J. Cano, Jan 03 2017

Formula

a(n) = n^2-sum{k>0, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
a(n) = n^2-sum{2<=p<=n, (p-1)*sum{0
a(n) = n^2-A024916(n)+A006218(n)-sum{k>1, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
a(n) = A004125(n)+A006218(n)-sum{k>1, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
Asymptotic behavior: a(n) = (1-Pi^2/12)*n^2 + O(n*log(n)) = A004125(n) + A006218(n) + O(n*log(n)).
Lim a(n)/n^2 = 1 - Pi^2/12 for n-->oo.
G.f.: (1/(1-x))*(x(1+x)/(1-x)^2-sum{k>0,sum{j>1,(j-1)*x^(j^k)/(1-x^(j^k))}= }).
Also: (1/(1-x))*(x(1+x)/(1-x)^2-sum{m>1, sum{10,j^(1/k) is an integer, j^(1/k)-1}}*x^m}).
a(n) = n^2-sum{10,sum{1
Recurrence: a(n)=a(n-1)-b(n)+2n-1, where b(n)=sum{1
a(n) = sum{1<=p<=n, ds_p(n)} where ds_p = digital sum base p.
a(n) = A043306(n) + n (that sequence ignores unary) = A014837(n) + n + 1 (that sequence ignores unary and base n in which n is "10"). - Alonso del Arte, Mar 26 2009

A244970 Total number of regions after n-th stage in the diagram of the symmetric representation of sigma on the four quadrants.

Original entry on oeis.org

1, 2, 6, 7, 11, 12, 16, 17, 25, 29, 33, 34, 38, 42, 50, 51, 55, 56, 60, 61, 73, 77, 81, 82, 90, 94, 106, 107, 111, 112, 116, 117, 129, 133, 141, 142, 146, 150, 162, 163, 167, 168, 172, 176, 184, 188, 192, 193, 201, 209, 221, 225, 229, 230, 242, 243, 255, 259, 263, 264
Offset: 1

Author

Omar E. Pol, Jul 08 2014

Keywords

Comments

Partial sums of A244971.
If we use toothpicks of length 1/2, so the area of the central square is equal to 1. The total area of the structure after n-th stage is equal to A024916(n), the sum of all divisors of all positive integers <= n, hence the total area of the n-th set of symmetric regions added at n-th stage is equal to sigma(n) = A000203(n), the sum of divisors of n.
If we use toothpicks of length 1, so the number of cells (and the area) of the central square is equal to 4. The number of cells (and the total area) of the structure after n-th stage is equal to 4*A024916(n) = A243980(n), hence the number of cells (and the total area) of the n-th set of symmetric regions added at n-th stage is equal to 4*A000203(n) = A239050(n).
a(n) is also the total number of terraces of the stepped pyramid with n levels described in A244050. - Omar E. Pol, Apr 20 2016

Examples

			Illustration of the structure after 15 stages (contains 50 regions):
.
.                   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.                  |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.               _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _
.             _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_
.           _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_
.          |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  |
.     _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _
.    | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | |
.    | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | |
.    | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | |
.    | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | |
.    | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | |
.    | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | |
.    | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | |
.    | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | |
.    | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | |
.    | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | |
.    | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | |
.    | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | |
.    | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | |
.    | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | |
.    | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | |
.    |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_|
.          | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |
.          |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _|
.            |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|
.              |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|
.                  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram is also the top view of the stepped pyramid with 15 levels described in A244050. - _Omar E. Pol_, Apr 20 2016
		

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

Original entry on oeis.org

1, 34, 278, 1335, 4461, 12513, 29321, 63146, 122439, 225597, 386649, 644557, 1015851, 1570515, 2333259, 3415660, 4835518, 6792187, 9268287, 12572469, 16673621, 21988337, 28424681, 36677981, 46446732, 58699434, 73107634, 90873690, 111384840, 136555392
Offset: 1

Author

Wesley Ivan Hurt, Sep 30 2014

Keywords

Crossrefs

Cf. A001160 (sigma_5).
Cf. A024916: Partial sums of sigma(n) = A000203(n).
Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
Cf. A064604: Partial sums of sigma_4(n) = A001159(n).

Programs

  • Magma
    [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
  • Mathematica
    Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
    Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
    
  • Python
    from math import isqrt
    def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018

A256533 Product of n and the sum of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 8, 24, 60, 105, 198, 287, 448, 621, 870, 1089, 1524, 1833, 2310, 2835, 3520, 4046, 4986, 5643, 6780, 7791, 8954, 9913, 11784, 13050, 14664, 16308, 18480, 20010, 22860, 24614, 27424, 29865, 32606, 35245, 39528, 42032, 45448, 48828, 53680, 56744, 62160, 65532, 70752, 75870, 80868, 84882, 92640, 97363, 104000
Offset: 1

Author

Omar E. Pol, May 02 2015

Keywords

Comments

a(n) is also sum of the volumes (or the total number of unit cubes) from two complementary polycubes: the irregular staircase after n-th stage described in A244580, and the irregular stepped pyramid after (n-1)st stage described in A245092. Note that in both structures the horizontal area in the n-th level is also the symmetric representation of sigma(n). This comment is represented by the third formula.

Examples

			For n = 3; a(3) = 3 * 8 = 19 + 5 = 24.
		

Programs

  • Mathematica
    a[n_]:=n*Apply[Plus,Flatten[Divisors[Range[n]]]]; Array[a,50] (* Ivan N. Ianakiev, May 03 2015 *)
    nxt[{n_,sd_,a_}]:=Module[{k=(n+1)*(DivisorSigma[1,n+1]+sd)},{n+1,sd+DivisorSigma[ 1,n+1],k}]; NestList[ nxt,{1,1,1},50][[;;,3]] (* Harvey P. Dale, Jun 12 2023 *)
  • PARI
    a(n) = n*sum(k=1, n, n\k*k); \\ Michel Marcus, Apr 29 2020
  • Python
    def A256533(n):
        s=0
        for k in range(1, n+1):
            s+=n%k
        return (n**3)-(s*n) # Indranil Ghosh, Feb 13 2017
    
  • Python
    from math import isqrt
    def A256533(n): return n*(-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1 # Chai Wah Wu, Oct 22 2023
    

Formula

a(n) = n*A024916(n).
a(n) = n^3 - A256532(n).
a(n) = A143128(n) + A175254(n-1), n > 1.
a(n) = A332264(n) + A175254(n). - Omar E. Pol, Apr 29 2020

A271342 Sum of all even divisors of all positive integers <= n.

Original entry on oeis.org

0, 2, 2, 8, 8, 16, 16, 30, 30, 42, 42, 66, 66, 82, 82, 112, 112, 138, 138, 174, 174, 198, 198, 254, 254, 282, 282, 330, 330, 378, 378, 440, 440, 476, 476, 554, 554, 594, 594, 678, 678, 742, 742, 814, 814, 862, 862, 982, 982, 1044, 1044, 1128, 1128, 1208, 1208, 1320, 1320, 1380, 1380, 1524, 1524, 1588, 1588, 1714, 1714
Offset: 1

Author

Omar E. Pol, Apr 08 2016

Keywords

Comments

a(n) is also the sum of all even divisors of all even positive integers <= n.
a(n) is also the total number of parts in all partitions of all positive integers <= n into an even number of equal parts. - Omar E. Pol, Jun 04 2017
The bisection of this sequence equals twice A024916 (see formulas). - Michel Marcus, Dec 14 2017

Examples

			For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] and the even divisors of all positive integers <= 6 are [2], [2, 4], [2, 6], so a(6) = 2 + 2 + 4 + 2 + 6 = 16. On the other hand the sum of all the divisors of all positive integers <= 6/2 are [1] + [1 + 2] + [1 + 3] = A024916(3) = 8, so a(6) = 2*8 = 16.
For n = 10, (floor(10/2) = 5) numbers have divisor 2, (floor(10/4) = 2) numbers have divisor 4, ..., (floor(10/10) = 1) numbers have divisor 10. Therefore, a(10) = 5 * 2 + 2 * 4 + 1 * 6 + 1 * 8 + 1 * 10 = 42. - _David A. Corneth_, Jun 06 2017
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSum[#, # &, EvenQ] &, 65] (* Michael De Vlieger, Jun 06 2017 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (1-d%2)*d)); \\ Michel Marcus, Jun 05 2017
    
  • PARI
    a(n) = 2 * sum(k=1, n\2, k*(n\(k<<1))) \\ David A. Corneth, Jun 06 2017
    
  • Python
    def A271342(n): return sum(k*((n>>1)//k) for k in range(1, (n>>1)+1))<<1 # Chai Wah Wu, Apr 26 2023
    
  • Python
    from math import isqrt
    def A271342(n): return -(s:=isqrt(m:=n>>1))**2*(s+1) + sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(1) = 0.
a(n) = 2*A024916((n-1)/2), if n is odd and n > 1.
a(n) = 2*A024916(n/2), if n is even.
a(n) = A024916(n) - A078471(n).
For n > 1, a(2*n + 1) = a(2*n). - David A. Corneth, Jun 06 2017
a(n) = c * n^2 + O(n*log(n)), where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Nov 27 2023

A274824 Triangle read by rows: T(n,k) = (n-k+1)*sigma(k), n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 3, 3, 6, 4, 4, 9, 8, 7, 5, 12, 12, 14, 6, 6, 15, 16, 21, 12, 12, 7, 18, 20, 28, 18, 24, 8, 8, 21, 24, 35, 24, 36, 16, 15, 9, 24, 28, 42, 30, 48, 24, 30, 13, 10, 27, 32, 49, 36, 60, 32, 45, 26, 18, 11, 30, 36, 56, 42, 72, 40, 60, 39, 36, 12, 12, 33, 40, 63, 48, 84, 48, 75, 52, 54, 24, 28, 13, 36, 44, 70, 54, 96, 56, 90, 65, 72, 36, 56, 14
Offset: 1

Author

Omar E. Pol, Oct 02 2016

Keywords

Comments

Theorem: for any sequence S the partial sums of the partial sums are also the antidiagonal sums of the square array in which the n-th row gives n times the sequence S. Therefore they are also the row sums of the triangular array in which the n-th diagonal gives n times the sequence S.
In this case the sequence S is A000203.
The n-th diagonal of this triangle gives n times A000203.
The row sums give A175254 which gives the partial sums of A024916 which gives the partial sums of A000203.
T(n,k) is also the total number of unit cubes that are exactly below the terraces of the k-th level (starting from the top) up the base of the stepped pyramid with n levels described in A245092. This fact is because the mentioned terraces have the same shape as the symmetric representation of sigma(k). For more information see A237593 and A237270.
In the definition of this sequence the value n-k+1 is also the height of the terraces associated to sigma(k) in the mentioned pyramid with n levels, or in other words, the distance between the mentioned terraces and the base of the pyramid.
The sum of the n-th row of triangle equals the volume (also the number of cubes) of the mentioned pyramid with n levels.
For an illustration of the pyramid, see the Links section.
The sum of the n-th row is also 1/4 of the volume of the stepped pyramid described in A244050 with n levels.
Column k lists the positive multiples of sigma(k).
The k-th term in the n-th diagonal is equal to n*sigma(k).
Note that this is also a square array read by antidiagonals upwards: T(i,j) = i*sigma(j), i>=1, j>=1. The first row of the array is A000203. So consider that the pyramid is upside down. The value of "i" is the distance between the base of the pyramid and the terraces associated to sigma(j). The antidiagonal sums give the partial sums of the partial sums of A000203.

Examples

			Triangle begins:
1;
2,  3;
3,  6,  4;
4,  9,  8,  7;
5,  12, 12, 14, 6;
6,  15, 16, 21, 12, 12;
7,  18, 20, 28, 18, 24,  8;
8,  21, 24, 35, 24, 36,  16, 15;
9,  24, 28, 42, 30, 48,  24, 30,  13;
10, 27, 32, 49, 36, 60,  32, 45,  26,  18;
11, 30, 36, 56, 42, 72,  40, 60,  39,  36,  12;
12, 33, 40, 63, 48, 84,  48, 75,  52,  54,  24, 28;
13, 36, 44, 70, 54, 96,  56, 90,  65,  72,  36, 56,  14;
14, 39, 48, 77, 60, 108, 64, 105, 78,  90,  48, 84,  28, 24;
15, 42, 52, 84, 66, 120, 72, 120, 91,  108, 60, 112, 42, 48, 24;
16, 45, 56, 91, 72, 132, 80, 135, 104, 126, 72, 140, 56, 72, 48, 31;
...
For n = 16 and k = 10 the sum of the divisors of 10 is 1 + 2 + 5 + 10 = 18, and 16 - 10 + 1 = 7, and 7*18 = 126, so T(16,10) = 126.
On the other hand, the symmetric representation of sigma(10) has two parts of 9 cells, giving a total of 18 cells. In the stepped pyramid described in A245092, with 16 levels, there are 16 - 10 + 1 = 7 cubes exactly below every cell of the symmetric representation of sigma(10) up the base of pyramid; hence the total numbers of cubes exactly below the terraces of the 10th level (starting from the top) up the base of the pyramid is equal to 7*18 = 126. So T(16,10) = 126.
The sum of the 16th row of the triangle is 16 + 45 + 56 + 91 + 72 + 132 + 80 + 135 + 104 + 126 + 72 + 140 + 56 + 72 + 48 + 31 = A175254(16) = 1276, equaling the volume (also the number of cubes) of the stepped pyramid with 16 levels described in A245092 (see Links section).
		

Crossrefs

Row sums of triangle give A175254.
Column 1 is A000027.
Initial zeros should be omitted in the following sequences related to the columns of triangle:
Columns 2-5: A008585, A008586, A008589, A008588.
Columns 6 and 11: A008594.
Columns 7-9: A008590, A008597, A008595.
Columns 10 and 17: A008600.
Columns 12-13: A135628, A008596.
Columns 14, 15 and 23: A008606.
Columns 16 and 25: A135631.
(There are many other OEIS sequences that are also columns of this triangle.)

Formula

T(n,k) = (n-k+1) * A000203(k).
T(n,k) = A004736(n,k) * A245093(n,k).

A275670 G.f. A(x,y) satisfies: A(x,y) = x*y + A(x,x*y)^2, with A(0,y) = 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 4, 0, 8, 1, 0, 16, 4, 0, 32, 14, 0, 64, 40, 0, 128, 108, 2, 0, 256, 272, 12, 0, 512, 664, 52, 0, 1024, 1568, 188, 0, 2048, 3632, 608, 1, 0, 4096, 8256, 1816, 12, 0, 8192, 18528, 5128, 76, 0, 16384, 41088, 13856, 360, 0, 32768, 90304, 36176, 1446, 0, 65536, 196864, 91856, 5192, 4, 0, 131072, 426368, 227968, 17192, 42, 0, 262144, 918016, 555040, 53504, 284, 0, 524288, 1966848, 1329696, 158588, 1496, 0, 1048576, 4195328, 3141632, 451824, 6704, 0, 2097152, 8914432, 7334208, 1245936, 26772, 6
Offset: 0

Author

Paul D. Hanna, Aug 04 2016

Keywords

Comments

Compare g.f. to G(x,y) = x*y + G(x*y,y)^2 with G(0,y) = 0, which generates triangle A138157.
Apparently, the g.f. of column n equals y^n*x^A033156(n) * P(n,x)/Q(n,x), where:
Q(n,x) = Product_{k=1..n} (1 - 2*x^k)^floor(n/k),
and P(n,x) is of degree A024916(n) - A033156(n).

Examples

			G.f.: A(x,y) = 1 + y*x + 2*y*x^2 + 4*y*x^3 + (y^2 + 8*y)*x^4 + (4*y^2 + 16*y)*x^5 + (14*y^2 + 32*y)*x^6 + (40*y^2 + 64*y)*x^7 + (2*y^3 + 108*y^2 + 128*y)*x^8 + (12*y^3 + 272*y^2 + 256*y)*x^9 + (52*y^3 + 664*y^2 + 512*y)*x^10 + (188*y^3 + 1568*y^2 + 1024*y)*x^11 + (y^4 + 608*y^3 + 3632*y^2 + 2048*y)*x^12 +...
such that A(x,y) = x*y + A(x,x*y)^2, with A(0,y) = 1; further,
A(x,y) = x*y + ( x^2*y + A(x,x^2*y)^2 )^2,
A(x,y) = x*y + ( x^2*y + ( x^3*y + A(x,x^3*y)^2 )^2 )^2, etc.
This table of coefficients in g.f. A(x,y) begins:
1;
0, 1;
0, 2;
0, 4;
0, 8, 1;
0, 16, 4;
0, 32, 14;
0, 64, 40;
0, 128, 108, 2;
0, 256, 272, 12;
0, 512, 664, 52;
0, 1024, 1568, 188;
0, 2048, 3632, 608, 1;
0, 4096, 8256, 1816, 12;
0, 8192, 18528, 5128, 76;
0, 16384, 41088, 13856, 360;
0, 32768, 90304, 36176, 1446;
0, 65536, 196864, 91856, 5192, 4;
0, 131072, 426368, 227968, 17192, 42;
0, 262144, 918016, 555040, 53504, 284;
0, 524288, 1966848, 1329696, 158588, 1496;
0, 1048576, 4195328, 3141632, 451824, 6704;
0, 2097152, 8914432, 7334208, 1245936, 26772, 6;
0, 4194304, 18876416, 16943680, 3342784, 98060, 80;
0, 8388608, 39848960, 38785536, 8761720, 335704, 636;
0, 16777216, 83890176, 88063616, 22508448, 1088496, 3844;
0, 33554432, 176166912, 198506624, 56822624, 3375096, 19492;
0, 67108864, 369106944, 444562432, 141270272, 10080760, 87184, 4;
0, 134217728, 771764224, 989807872, 346507120, 29167000, 354628, 80;
0, 268435456, 1610629120, 2192154880, 839762496, 82113648, 1338376, 812;
0, 536870912, 3355467776, 4831741952, 2013427136, 225746384, 4753320, 5916;
0, 1073741824, 6979354624, 10603063808, 4781027584, 607828752, 16052296, 35000;
0, 2147483648, 14495563776, 23174734336, 11254280416, 1606760304, 51954808, 178904, 1; ...
Row polynomials begin:
n=0: 1;
n=1: y;
n=2: 2*y;
n=3: 4*y;
n=4: 8*y + y^2;
n=5: 16*y + 4*y^2;
n=6: 32*y + 14*y^2;
n=7: 64*y + 40*y^2;
n=8: 128*y + 108*y^2 + 2*y^3;
n=9: 256*y + 272*y^2 + 12*y^3;
n=10: 512*y + 664*y^2 + 52*y^3;
n=11: 1024*y + 1568*y^2 + 188*y^3;
n=12: 2048*y + 3632*y^2 + 608*y^3 + y^4;
n=13: 4096*y + 8256*y^2 + 1816*y^3 + 12*y^4;
n=14: 8192*y + 18528*y^2 + 5128*y^3 + 76*y^4;
n=15: 16384*y + 41088*y^2 + 13856*y^3 + 360*y^4;
n=16: 32768*y + 90304*y^2 + 36176*y^3 + 1446*y^4;
n=17: 65536*y + 196864*y^2 + 91856*y^3 + 5192*y^4 + 4*y^5; ...
the first row in which y^m appears is given by n = A033156(m), where A033156 begins:
[1, 4, 8, 12, 17, 22, 27, 32, 38, 44, 50, 56, 62, 68, 74, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 200, ...].
Generating functions of initial columns.
G.f. of column 0: 1
G.f. of column 1: y*x/(1-2*x).
G.f. of column 2: y^2*x^4/((1-2*x)^2*(1-2*x^2)).
G.f. of column 3: y^3*2*x^8/((1-2*x)^3*(1-2*x^2)*(1-2*x^3)).
G.f. of column 4: y^4*x^12*(1 + 4*x - 10*x^3)/((1-2*x)^4*(1-2*x^2)^2*(1-2*x^3)*(1-2*x^4)).
G.f. of column 5: y^5*x^17*(4 + 2*x + 8*x^2 - 28*x^4)/((1-2*x)^5*(1-2*x^2)^2*(1-2*x^3)*(1-2*x^4)*(1-2*x^5)).
G.f. of column 6: y^6*x^22*(6 + 8*x - 20*x^3 - 24*x^4 - 36*x^5 - 56*x^6 + 16*x^7 + 176*x^8 + 224*x^9 - 336*x^11)/((1-2*x)^6*(1-2*x^2)^3*(1-2*x^3)^2*(1-2*x^4)*(1-2*x^5)*(1-2*x^6)).
G.f. of column 7: y^7*x^27*(4 + 24*x + 4*x^2 - 12*x^3 - 72*x^5 - 112*x^6 - 96*x^7 + 112*x^8 - 64*x^9 + 64*x^10 + 496*x^11 + 576*x^12 - 1056*x^14) / ((1-2*x)^7*(1-2*x^2)^3*(1-2*x^3)^2*(1-2*x^4)*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)).
G.f. of column 8: y^8*x^32*(1 + 24*x + 36*x^2 - 4*x^3 - 88*x^4 - 202*x^5 - 14*x^6 - 82*x^7 - 168*x^8 + 400*x^9 + 440*x^10 + 892*x^11 + 1292*x^12 - 660*x^13 - 800*x^14 - 688*x^15 - 1776*x^16 - 1136*x^17 - 4504*x^18 - 2672*x^19 + 4672*x^20 + 5664*x^21 + 12672*x^22 - 13728*x^24) / ((1-2*x)^8*(1-2*x^2)^4*(1-2*x^3)^2*(1-2*x^4)^2*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)).
G.f. of column 9: y^9*x^38*(8 + 60*x + 72*x^2 + 16*x^3 - 238*x^4 - 584*x^5 - 232*x^6 + 172*x^7 + 328*x^8 + 52*x^9 + 1012*x^10 + 2636*x^11 + 1464*x^12 + 520*x^13 - 2040*x^14 - 664*x^15 - 2360*x^16 - 8712*x^17 - 13008*x^18 - 3696*x^19 + 12080*x^20 + 15392*x^21 + 1456*x^22 - 11040*x^23 + 18112*x^24 + 37728*x^25 + 47040*x^26 - 34304*x^27 - 78144*x^28 - 73216*x^29 + 91520*x^31) / ((1-2*x)^9*(1-2*x^2)^4*(1-2*x^3)^3*(1-2*x^4)^2*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)*(1-2*x^9)).
G.f. of column 10: y^10*x^44*(28 + 96*x + 198*x^2 - 160*x^3 - 864*x^4 - 596*x^5 - 856*x^6 - 384*x^7 + 3652*x^8 + 4752*x^9 + 696*x^10 - 2972*x^11 + 3928*x^12 + 4848*x^13 - 8360*x^14 - 18768*x^15 - 11000*x^16 - 14184*x^17 - 9896*x^18 + 17184*x^19 + 23664*x^20 + 7904*x^21 + 34480*x^22 + 53472*x^23 + 54160*x^24 + 68160*x^25 + 10560*x^26 - 166208*x^27 - 203488*x^28 - 86720*x^29 - 23552*x^30 + 13632*x^31 + 67584*x^32 - 95232*x^33 - 232256*x^34 + 129536*x^35 + 677632*x^36 + 624000*x^37 + 355840*x^38 - 67584*x^39 - 988416*x^40 - 1464320*x^41 + 1244672*x^43) / ((1-2*x)^10*(1-2*x^2)^5*(1-2*x^3)^3*(1-2*x^4)^2*(1-2*x^5)^2*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)*(1-2*x^9)*(1-2*x^10)).
...
The g.f. of column n, y^n * x^A033156(n) * P(n,x)/Q(n,x), appears to have the following denominator:
Q(n,x) = Product_{k=1..n} (1 - 2*x^k)^floor(n/k), with
P(n,x) being a polynomial of degree A024916(n) - A033156(n),
where A024916(n) = Sum_{k=1..n} k*floor(n/k).
...
		

Crossrefs

Cf. A274965 (row sums), A275691 (antidiagonal sums), A033156.
Cf. variant: A138157.

Programs

  • PARI
    /* Print first N rows of this triangle: */ N=32;
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^2 + y*x^(n+1-k)); polcoeff(A, n)}
    {for(n=0, N, for(k=0,n, if(k==0,print1(polcoeff(a(n)+y*O(y^n),k,y)", "), if(polcoeff(a(n)+y*O(y^n),k,y)==0,break,print1(polcoeff(a(n)+y*O(y^n),k,y),", "))));print(""))}

Formula

G.f. A(x,y) satisfies: 1 = ...(((((A(x,y) - x*y)^(1/2) - x^2*y)^(1/2) - x^3*y)^(1/2) - x^4*y)^(1/2) - x^5*y)^(1/2) -...- x^n*y)^(1/2) -..., an infinite series of nested square roots.

A299692 a(n) is the total area that is visible in the perspective view of the stepped pyramid with n levels described in A245092.

Original entry on oeis.org

3, 10, 20, 35, 51, 75, 97, 128, 159, 197, 231, 283, 323, 375, 429, 492, 544, 619, 677, 759, 833, 913, 983, 1091, 1172, 1266, 1360, 1472, 1560, 1692, 1786, 1913, 2027, 2149, 2267, 2430, 2542, 2678, 2812, 2982, 3106, 3286, 3416, 3588, 3756, 3920, 4062, 4282, 4437, 4630, 4804, 5006, 5166, 5394, 5576, 5808, 6002
Offset: 1

Author

Omar E. Pol, Mar 06 2018

Keywords

Comments

a(n) is also the sum of all divisors of all positive integers <= n, plus the n-th oblong number, since A024916(n) equals the total area of the horizontal terraces of the stepped pyramid with n levels, and A002378(n) equals the total area of the vertical sides that are visible (see link).
a(n) is also the sum of all aliquot divisors of all positive integers <= n, plus the n-th triangular matchstick number.

Examples

			For n = 3 the areas of the terraces of the first three levels starting from the top of the stepped pyramid are 1, 3 and 4 respectively. On the other hand the areas of the vertical sides that are visible are [1, 1], [2, 2], [2, 1, 1, 2], or in successive levels 2, 4, 6 respectively. Hence the total area that is visible is equal to 1 + 3 + 4 + 2 + 4 + 6 = 8 + 12 = 20, so a(3) = 20.
For n = 16 the total number of horizontal and vertical cells that are visible are 220 and 272 respectively. So a(16) = 220 + 272 = 492 (see the link).
		

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[1, n] + 2*n, {n, 1, 50}]] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    a(n) = sum(k=1, n, n\k*k) + n*(n+1); \\ Michel Marcus, Jun 21 2018
    
  • Python
    from math import isqrt
    def A299692(n): return n*(n+1)+(-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A024916(n) + A002378(n).
a(n) = A153485(n) + A045943(n).
a(n) = A328366(n)/2. - Omar E. Pol, Apr 22 2020
a(n) = c * n^2 + O(n*log(n)), where c = zeta(2)/2 + 1 = A072691 + 1 = 1.822467... . - Amiram Eldar, Mar 21 2024
Previous Showing 91-100 of 228 results. Next