A293490
a(n) = Sum_{k=0..n} binomial(2*k, k)*binomial(2*n-k, n).
Original entry on oeis.org
1, 4, 18, 84, 400, 1932, 9436, 46512, 231066, 1155660, 5813808, 29396952, 149305884, 761282032, 3894953640, 19987999696, 102847396416, 530446714812, 2741576339716, 14196136939600, 73631851898220, 382483602131400, 1989514312826400, 10361255764532400, 54020655931542300, 281933439875693424
Offset: 0
-
A293490 := Concatenation([1], List([1..3*10^2],n -> Sum([0..n],k -> Binomial(2*k, k)*(Binomial(2*n - k, n))))); # Muniru A Asiru, Oct 15 2017
-
Table[Sum[Binomial[2 k, k] Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[1/(Sqrt[1 - 4 x] (1 - x)^(n + 1)), {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 - 2 x/(1 + ContinuedFractionK[-x, 1, {k, 1, n}])), {x, 0, n}], {n, 0, 25}]
CoefficientList[Series[1/(Sqrt[2 Sqrt[1-4 x]-1] Sqrt[1-4 x]),{x,0,25}],x] (* Alexander M. Haupt, Jun 24 2018 *)
-
a(n) = sum(k=0, n, binomial(2*k, k)*binomial(2*n-k, n)); \\ Michel Marcus, Oct 15 2017
A383254
Expansion of 1/sqrt( (1-x) * (1-5*x)^3 ).
Original entry on oeis.org
1, 8, 51, 300, 1695, 9348, 50729, 272128, 1447155, 7643880, 40156281, 210019428, 1094338401, 5684293020, 29446107975, 152181330480, 784880109315, 4040712839880, 20768844586025, 106595697483700, 546389531720445, 2797395801163260, 14306735857573995
Offset: 0
-
[&+[(2*k+1)*Binomial(2*k, k)*Binomial(n+1, k+1): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2025
-
Table[Sum[(2*k+1)* Binomial[2*k, k]*Binomial[n+1,k+1],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, May 18 2025 *)
-
a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(n+1, k+1));
Original entry on oeis.org
1, 4, 18, 85, 410, 1999, 9807, 48304, 238570, 1180615, 5851253, 29033074, 144190943, 716652070, 3564079250, 17734184365, 88280673770, 439625873215, 2189988826125, 10912480440850, 54389237971285, 271142650382080
Offset: 0
-
seq( (1/2)*(5^n + add(binomial(n,k)*binomial(2*k,k), k = 0..n)), n = 0..30); # Peter Bala, Jan 08 2022
-
Table[Sum[Sum[Binomial[n,j]Binomial[2j,j+k],{j,0,n}],{k,0,n}],{n,0,25}] (* Harvey P. Dale, Dec 16 2011 *)
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 19, 28, 18, 4, 1, 51, 95, 70, 30, 5, 1, 141, 306, 285, 140, 45, 6, 1, 393, 987, 1071, 665, 245, 63, 7, 1, 1107, 3144, 3948, 2856, 1330, 392, 84, 8, 1, 3139, 9963, 14148, 11844, 6426, 2394, 588, 108, 9, 1
Offset: 0
Triangle begins:
1
1 1
3 2 1
7 9 3 1
19 28 18 4 1
...
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator begins
0
1 0
2 2 0
0 6 3 0
-6 0 12 4 0
0 -30 0 20 5 0
80 0 -90 0 30 6 0
0 560 0 -210 0 42 7 0
-2310 0 2240 0 -420 0 56 8 0
....
and equals the generalized exponential Riordan array [x + log(Bessel_I(0,2*x)), x], and so has integer entries. (End)
-
A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[ Binomial[n, k]*A002426[n - k], {n, 0, 99}, {k, 0, n} ]//Flatten (* G_. C. Greubel_, Mar 07 2017 *)
A248168
Expansion of g.f. 1/sqrt((1-3*x)*(1-11*x)).
Original entry on oeis.org
1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, 518839783, 5414767897, 56795795679, 598213529809, 6322787125207, 67026654455433, 712352213507151, 7587639773475777, 80977812878889927, 865716569022673401, 9269461606674304959, 99387936492243451569, 1066975862517563301303
Offset: 0
G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...
where A(x)^2 = 1/((1-3*x)*(1-11*x)):
A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...
- Seiichi Manyama, Table of n, a(n) for n = 0..961
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
-
[n le 2 select 7^(n-1) else (7*(2*n-3)*Self(n-1) - 33*(n-2)*Self(n-2))/(n-1) : n in [1..40]]; // G. C. Greubel, May 31 2025
-
CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
-
{a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=sum(k=0,n, 3^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))}
for(n=0, 25, print1(a(n), ", "))
-
@CachedFunction
def A248168(n):
if (n<2): return 7^n
else: return (7*(2*n-1)*A248168(n-1) - 33*(n-1)*A248168(n-2))//n
print([A248168(n) for n in range(41)]) # G. C. Greubel, May 31 2025
A340970
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 11, 33, 67, 113, 171, ...
1, 45, 245, 721, 1593, 2981, ...
1, 195, 1921, 8179, 23649, 54691, ...
1, 873, 15525, 95557, 361449, 1032801, ...
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
-
T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
-
T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);
A359643
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k).
Original entry on oeis.org
1, 5, 37, 317, 2885, 27105, 259765, 2523813, 24768069, 244941833, 2437083697, 24367722725, 244639635749, 2464477467769, 24899468129405, 252202062544617, 2560119328830725, 26038134699958233, 265278657849511561, 2706809063101138409, 27657194997231516145, 282941098708193905485
Offset: 0
-
A359643 := proc(n)
hypergeom([-n,1/4,1/2,3/4],[1/3,2/3,1],-256/27) ;
simplify(%) ;
end proc:
seq(A359643(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
-
Table[Sum[Binomial[n, k]*Binomial[4*k, k], {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k) * binomial(4*k,k)); \\ Michel Marcus, Jan 09 2023
A383573
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(2*(n-2*k),n-2*k).
Original entry on oeis.org
1, 2, 7, 24, 89, 338, 1311, 5152, 20449, 81778, 328999, 1330008, 5398265, 21984610, 89791103, 367643776, 1508560257, 6201927074, 25540266503, 105336838616, 435035342553, 1798875915826, 7446653956895, 30857577536800, 127987031688161, 531301328367762, 2207281722474919
Offset: 0
-
[&+[Binomial(n-k, k) * Binomial(2*(n-2*k), n-2*k): k in [0..Floor(n div 2)]]: n in [0..35]]; // Vincenzo Librandi, May 03 2025
-
Table[Sum[Binomial[n-k,k]* Binomial[2*(n-2*k),n-2*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 03 2025 *)
-
a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(2*(n-2*k), n-2*k));
A383581
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-3*k),n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 74, 270, 1005, 3788, 14418, 55289, 213270, 826614, 3216629, 12558928, 49175136, 193023965, 759299438, 2992534344, 11813985377, 46709675040, 184928644350, 733047010709, 2908981549006, 11555513379450, 45945148281437, 182835149061920, 728149606630164
Offset: 0
-
[&+[Binomial(n-2*k,k) * Binomial(2*(n-3*k),n-3*k): k in [0..n div 3]]: n in [0..25]]; // Vincenzo Librandi, May 02 2025
-
Table[Sum[Binomial[n-2*k,k]* Binomial[2*(n-3*k),n-3*k],{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
-
a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*(n-3*k), n-3*k));
A383582
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-4*k),n-4*k).
Original entry on oeis.org
1, 2, 6, 20, 71, 256, 942, 3512, 13221, 50138, 191260, 733088, 2821037, 10892100, 42174848, 163706656, 636816019, 2481902842, 9689155902, 37882580356, 148313102097, 581365577564, 2281393560802, 8961689897248, 35235582858441, 138657185501870, 546064549476476
Offset: 0
-
[&+[Binomial(n-3*k,k) * Binomial(2*(n-4*k),n-4*k): k in [0..n div 4]]: n in [0..45]]; // Vincenzo Librandi, May 02 2025
-
Table[Sum[Binomial[n-3*k,k]* Binomial[2*(n-4*k),n-4*k],{k,0,Floor[n/4]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
-
a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-4*k), n-4*k));
Comments