cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A293490 a(n) = Sum_{k=0..n} binomial(2*k, k)*binomial(2*n-k, n).

Original entry on oeis.org

1, 4, 18, 84, 400, 1932, 9436, 46512, 231066, 1155660, 5813808, 29396952, 149305884, 761282032, 3894953640, 19987999696, 102847396416, 530446714812, 2741576339716, 14196136939600, 73631851898220, 382483602131400, 1989514312826400, 10361255764532400, 54020655931542300, 281933439875693424
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 10 2017

Keywords

Comments

Main diagonal of iterated partial sums array of central binomial coefficients (starting with the first partial sums).

Crossrefs

Programs

  • GAP
    A293490 := Concatenation([1], List([1..3*10^2],n -> Sum([0..n],k -> Binomial(2*k, k)*(Binomial(2*n - k, n))))); # Muniru A Asiru, Oct 15 2017
    
  • Mathematica
    Table[Sum[Binomial[2 k, k] Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/(Sqrt[1 - 4 x] (1 - x)^(n + 1)), {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 - 2 x/(1 + ContinuedFractionK[-x, 1, {k, 1, n}])), {x, 0, n}], {n, 0, 25}]
    CoefficientList[Series[1/(Sqrt[2 Sqrt[1-4 x]-1] Sqrt[1-4 x]),{x,0,25}],x] (* Alexander M. Haupt, Jun 24 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)*binomial(2*n-k, n)); \\ Michel Marcus, Oct 15 2017

Formula

a(n) = [x^n] 1/(sqrt(1 - 4*x)*(1 - x)^(n+1)).
a(n) = [x^n] 1/((1 - x)^(n+1)*(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))), a continued fraction.
a(n) = 4^n*Gamma(n+1/2)*2F1(-n,n+1; 1/2-n; 1/4)/(sqrt(Pi)*Gamma(n+1)).
From Vaclav Kotesovec, Oct 16 2017: (Start)
D-finite with recurrence: 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-1)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2).
a(n) ~ 2^(4*n + 3/2) / (3^(n + 1/2) * sqrt(Pi*n)).
(End)
G.f.: 1/(sqrt(2*sqrt(1-4*x)-1)*sqrt(1-4*x)). - Alexander M. Haupt, Jun 24 2018

A383254 Expansion of 1/sqrt( (1-x) * (1-5*x)^3 ).

Original entry on oeis.org

1, 8, 51, 300, 1695, 9348, 50729, 272128, 1447155, 7643880, 40156281, 210019428, 1094338401, 5684293020, 29446107975, 152181330480, 784880109315, 4040712839880, 20768844586025, 106595697483700, 546389531720445, 2797395801163260, 14306735857573995
Offset: 0

Views

Author

Seiichi Manyama, May 05 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(2*k+1)*Binomial(2*k, k)*Binomial(n+1, k+1): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2025
  • Mathematica
    Table[Sum[(2*k+1)* Binomial[2*k, k]*Binomial[n+1,k+1],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, May 18 2025 *)
  • PARI
    a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(n+1, k+1));
    

Formula

a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(n+1,k+1).
D-finite with recurrence n*a(n) +2*(-3*n-1)*a(n-1) +5*n*a(n-2)=0. - R. J. Mathar, May 05 2025
a(n) ~ 5^(n + 1/2) * sqrt(n/Pi). - Vaclav Kotesovec, May 05 2025
From Seiichi Manyama, Aug 19 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k) * binomial(n+1,n-k). (End)

A110166 Row sums of Riordan array A110165.

Original entry on oeis.org

1, 4, 18, 85, 410, 1999, 9807, 48304, 238570, 1180615, 5851253, 29033074, 144190943, 716652070, 3564079250, 17734184365, 88280673770, 439625873215, 2189988826125, 10912480440850, 54389237971285, 271142650382080
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Number of 5-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012
From Peter Bala, Jan 09 2022: (Start)
Conjectures: for k >= 2, the number of k-ary words of length n such that the number of 1's <= the number of 0's is equal to the coefficient of x^n in the expansion of ( k*x + 1/(1 + x) )^n, and satisfies the recurrence u(0) = 1, u(1) = k-1 and n*u(n) = (k-2)*(2*n-1)*u(n-1) - k*(k-4)*(n-1)* u(n-2) + k^(n-1) for n >= 2.
For cases see A027306 (k = 2), A027914 (k = 3) and A032443 (k = 4). (End)

Crossrefs

Programs

  • Maple
    seq( (1/2)*(5^n + add(binomial(n,k)*binomial(2*k,k), k = 0..n)), n = 0..30); # Peter Bala, Jan 08 2022
  • Mathematica
    Table[Sum[Sum[Binomial[n,j]Binomial[2j,j+k],{j,0,n}],{k,0,n}],{n,0,25}] (* Harvey P. Dale, Dec 16 2011 *)

Formula

G.f.: (1/sqrt(1-6*x+5*x^2))/(1-(1-3*x-sqrt(1-6*x+5*x^2))/(2*x)).
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} C(n, j)*C(2*j, j+k).
Recurrence: n*a(n) = (11*n-8)*a(n-1) - 5*(7*n-10)*a(n-2) + 25*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 5^n/2*(1+sqrt(5)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Oct 18 2012
From Peter Bala, Jan 08 2022: (Start)
a(n) = (1/2)*(5^n + A026375(n)) = (1/2)*(5^n + Sum_{k = 0..n} binomial(n,k) *binomial(2*k,k)).
a(n) = (1/2)*(5^n)*(1 + Sum_{k = 0..n} binomial(n,k)*binomial(2*k,k)*(-1/5)^k).
a(n) = [x^n] ( 5*x + 1/(1 + x) )^n.
a(0) = 1, a(1) = 4 and n*a(n) = 3*(2*n-1)*a(n-1) - 5*(n-1)*a(n-2) + 5^(n-1) for n >= 2.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
Binomial transform of A032443. (End)

A171128 A117852*A130595 as lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 19, 28, 18, 4, 1, 51, 95, 70, 30, 5, 1, 141, 306, 285, 140, 45, 6, 1, 393, 987, 1071, 665, 245, 63, 7, 1, 1107, 3144, 3948, 2856, 1330, 392, 84, 8, 1, 3139, 9963, 14148, 11844, 6426, 2394, 588, 108, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2009

Keywords

Comments

Mirror image of triangle in A135091.
Exponential Riordan array [exp(x)*Bessel_I(0,2*x), x] = A007318 * A109187. - Peter Bala, Feb 12 2017

Examples

			Triangle begins:
   1
   1  1
   3  2  1
   7  9  3 1
  19 28 18 4 1
  ...
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator begins
      0
      1    0
      2    2     0
      0    6     3     0
     -6    0    12     4     0
      0  -30     0    20     5   0
     80    0   -90     0    30   6   0
      0  560     0  -210     0  42   7  0
  -2310    0  2240     0  -420   0  56  8  0
  ....
and equals the generalized exponential Riordan array [x + log(Bessel_I(0,2*x)), x], and so has integer entries. (End)
		

Crossrefs

A000984 (row sums), A135091 (row reversed). Cf. A002426, A117852, A130595, A109187.

Programs

  • Mathematica
    A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[ Binomial[n, k]*A002426[n - k], {n, 0, 99}, {k, 0, n} ]//Flatten (* G_. C. Greubel_, Mar 07 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n), A104454(n) for x = -1,0,1,2,3,4,5,6 respectively.
T(n,k) = binomial(n,k)*A002426(n-k). - Philippe Deléham, Dec 12 2009
From Peter Bala, Feb 12 2017: (Start)
T(n,k) = Sum_{j = 0..floor((n-k)/2)} n!/((n-k-2*j)!*j!^2*k!).
T(n,k) = n/k*T(n-1,k-1) with T(n,0) = A002426(n).
(n - k)^2*T(n,k) = n*(2*n - 2*k - 1)*T(n-1,k) + 3*n*(n - 1)*T(n-2,k).
O.g.f. = 1/sqrt((1 - (1 + t)*z)^2 - 4*z^2) = 1 + (1 + t)*z + (3 + 2*t + t^2)*z^2 + (7 + 9*t + 3*t^2 + t^3 )*z^3 + ....
E.g.f. Bessel_I(0,2*x) * exp((1 + t)*x) = 1 + (1 + t)*z + (3 + 2*t + t^2)*z^2/2! + (7 + 9*t + 3*t^2 + t^3 )*z^3/3! + ....
n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)*(1 + t)^(n-2*k) = coefficient of x^n in the expansion of (1 + (1 + t)*x + x^2)^n.
The polynomials R(n, t - 1) are the row polynomials of A109187.
d/dt(R(n,t)) = n*R(n-1,t).
Moment representation on a finite interval: R(n,t) = 1/Pi * Integral_{x = t-1 .. t+3} x^n/sqrt((t + 3 - x)*(x - t + 1)) dx.
The zeros of the row polynomials appear to lie on the vertical line Re(z) = -1 in the complex plane, and the zeros of R(n,t) and R(n+1,t) appear to interlace along this line.
(End)

A248168 Expansion of g.f. 1/sqrt((1-3*x)*(1-11*x)).

Original entry on oeis.org

1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, 518839783, 5414767897, 56795795679, 598213529809, 6322787125207, 67026654455433, 712352213507151, 7587639773475777, 80977812878889927, 865716569022673401, 9269461606674304959, 99387936492243451569, 1066975862517563301303
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2014

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...
where A(x)^2 = 1/((1-3*x)*(1-11*x)):
A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...
		

Crossrefs

Programs

  • Magma
    [n le 2 select 7^(n-1) else (7*(2*n-3)*Self(n-1) - 33*(n-2)*Self(n-2))/(n-1) : n in [1..40]]; // G. C. Greubel, May 31 2025
    
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
  • PARI
    {a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n, 3^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0, 25, print1(a(n), ", "))
    
  • SageMath
    @CachedFunction
    def A248168(n):
         if (n<2): return 7^n
         else: return (7*(2*n-1)*A248168(n-1) - 33*(n-1)*A248168(n-2))//n
    print([A248168(n) for n in range(41)]) # G. C. Greubel, May 31 2025

Formula

a(n) equals the central coefficient in (1 + 7*x + 4*x^2)^n, n>=0.
a(n) = Sum_{k=0..n} 3^(n-k) * 2^k * C(n,k) * C(2*k,k).
a(n) = Sum_{k=0..n} 11^(n-k) * (-2)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Apr 20 2019
a(n)^2 = A248167(n), which gives the coefficients in 1 / AGM(1-3*11*x, sqrt((1-3^2*x)*(1-11^2*x))).
Equals the binomial transform of 2^n*A026375(n).
Equals the second binomial transform of A084771.
Equals the third binomial transform of A059304(n) = 2^n*(2*n)!/(n!)^2.
a(n) ~ 11^(n+1/2)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 03 2014
D-finite with recurrence: n*a(n) +7*(-2*n+1)*a(n-1) +33*(n-1)*a(n-2)=0. [Belbachir]
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 11^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A340970 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,     1,      1,       1, ...
  1,   3,     5,     7,      9,      11, ...
  1,  11,    33,    67,    113,     171, ...
  1,  45,   245,   721,   1593,    2981, ...
  1, 195,  1921,  8179,  23649,   54691, ...
  1, 873, 15525, 95557, 361449, 1032801, ...
		

Crossrefs

Columns k=0..3 give A000012, A026375, A084771, A340973.
Rows n=0..2 give A000012, A005408, A080859.
Main diagonal gives A340971.
Cf. A340968.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
    
  • PARI
    T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);

Formula

G.f. of column k: 1/sqrt((1 - x) * (1 - (4*k+1)*x)).
T(n,k) = [x^n] (1+(2*k+1)*x+(k*x)^2)^n.
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0,2*k*x). - Ilya Gutkovskiy, Feb 01 2021
From Seiichi Manyama, Aug 19 2025: (Start)
T(n,k) = (1/4)^n * Sum_{j=0..n} (4*k+1)^j * binomial(2*j,j) * binomial(2*(n-j),n-j).
T(n,k) = Sum_{j=0..n} (-k)^j * (4*k+1)^(n-j) * binomial(n,j) * binomial(2*j,j). (End)

A359643 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k).

Original entry on oeis.org

1, 5, 37, 317, 2885, 27105, 259765, 2523813, 24768069, 244941833, 2437083697, 24367722725, 244639635749, 2464477467769, 24899468129405, 252202062544617, 2560119328830725, 26038134699958233, 265278657849511561, 2706809063101138409, 27657194997231516145, 282941098708193905485
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 09 2023

Keywords

Comments

In general, for m>1, Sum_{k=0..n} binomial(n,k) * binomial(m*k,k) ~ sqrt((m + (1 - 1/m)^(m-1))/(m-1)) * (1 + m^m/(m-1)^(m-1))^n / sqrt(2*Pi*n).

Crossrefs

Programs

  • Maple
    A359643 := proc(n)
        hypergeom([-n,1/4,1/2,3/4],[1/3,2/3,1],-256/27) ;
        simplify(%) ;
    end proc:
    seq(A359643(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[4*k, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * binomial(4*k,k)); \\ Michel Marcus, Jan 09 2023

Formula

a(n) ~ 283^(n + 1/2) / (2^(7/2) * sqrt(Pi*n) * 3^(3*n + 1/2)).
Conjecture D-finite with recurrence +81*n*(3*n-1)*(3*n-2)*a(n) +3*(243*n^3-8433*n^2+14984*n-7064)*a(n-1) +2*(-58607*n^3+297306*n^2-491401*n+269124)*a(n-2) +6*(n-2)*(56663*n^2-237722*n+252221)*a(n-3) -3*(n-2)*(n-3)*(111625*n-286402)*a(n-4) +110653*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 09 2023
a(n) = 4F3( -n,1/4,1/2,3/4 ; 1/3, 2/3,1 ; -256/27). - R. J. Mathar, Jan 10 2023
a(n) = [x^n] (1 + 5*x + 6*x^2 + 4*x^3 + x^4)^n. - Ilya Gutkovskiy, Apr 17 2025

A383573 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(2*(n-2*k),n-2*k).

Original entry on oeis.org

1, 2, 7, 24, 89, 338, 1311, 5152, 20449, 81778, 328999, 1330008, 5398265, 21984610, 89791103, 367643776, 1508560257, 6201927074, 25540266503, 105336838616, 435035342553, 1798875915826, 7446653956895, 30857577536800, 127987031688161, 531301328367762, 2207281722474919
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-k, k) * Binomial(2*(n-2*k), n-2*k): k in [0..Floor(n div 2)]]: n in [0..35]]; // Vincenzo Librandi, May 03 2025
  • Mathematica
    Table[Sum[Binomial[n-k,k]* Binomial[2*(n-2*k),n-2*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 03 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(2*(n-2*k), n-2*k));
    

Formula

G.f.: 1/sqrt((1 - x^2) * (1 - x^2 - 4*x)).
a(n) ~ phi^(3*n + 3) / (2^(3/2) * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 01 2025

A383581 a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-3*k),n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 74, 270, 1005, 3788, 14418, 55289, 213270, 826614, 3216629, 12558928, 49175136, 193023965, 759299438, 2992534344, 11813985377, 46709675040, 184928644350, 733047010709, 2908981549006, 11555513379450, 45945148281437, 182835149061920, 728149606630164
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-2*k,k) * Binomial(2*(n-3*k),n-3*k): k in [0..n div 3]]: n in [0..25]]; // Vincenzo Librandi, May 02 2025
  • Mathematica
    Table[Sum[Binomial[n-2*k,k]* Binomial[2*(n-3*k),n-3*k],{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*(n-3*k), n-3*k));
    

Formula

G.f.: 1/sqrt((1 - x^3) * (1 - x^3 - 4*x)).

A383582 a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-4*k),n-4*k).

Original entry on oeis.org

1, 2, 6, 20, 71, 256, 942, 3512, 13221, 50138, 191260, 733088, 2821037, 10892100, 42174848, 163706656, 636816019, 2481902842, 9689155902, 37882580356, 148313102097, 581365577564, 2281393560802, 8961689897248, 35235582858441, 138657185501870, 546064549476476
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-3*k,k) * Binomial(2*(n-4*k),n-4*k): k in [0..n div 4]]: n in [0..45]]; // Vincenzo Librandi, May 02 2025
  • Mathematica
    Table[Sum[Binomial[n-3*k,k]* Binomial[2*(n-4*k),n-4*k],{k,0,Floor[n/4]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-4*k), n-4*k));
    

Formula

G.f.: 1/sqrt((1 - x^4) * (1 - x^4 - 4*x)).
a(n) ~ (2 + sqrt(2) + sqrt(10 + 8*sqrt(2)))^n / (sqrt((sqrt(5 + 32*sqrt(2)) - 7)*Pi*n) * 2^(n + 7/4)). - Vaclav Kotesovec, May 01 2025
Previous Showing 21-30 of 59 results. Next