cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A122994 a(n) = a(n-1)+9*a(n-2) initialized with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 12, 39, 147, 498, 1821, 6303, 22692, 79419, 283647, 998418, 3551241, 12537003, 44498172, 157331199, 557814747, 1973795538, 6994128261, 24758288103, 87705442452, 310530035379, 1099879017447, 3894649335858, 13793560492881, 48845404515603, 172987448951532
Offset: 0

Views

Author

Roger L. Bagula, Sep 22 2006

Keywords

Comments

The two roots of the denominator of the g.f. (for Binet's formula) are -0.393486... and 0.2823756...
Pisano period lengths: 1, 3, 1, 6, 6, 3, 6, 12, 1, 6, 10, 6, 84, 6, 6, 24,144, 3, 72, 6,... - R. J. Mathar, Aug 10 2012

Crossrefs

Cf. A026597.

Programs

Formula

G.f.: -(1+2*x)/(-1+x+9*x^2). a(n) = A015445(n)+2*A015445(n-1). [R. J. Mathar, Aug 12 2009]
a(n) = (1/2+5*sqrt(37)/74) *(1/2+sqrt(37)/2)^(n-1) +(1/2-5*sqrt(37)/74) *(1/2-sqrt(37)/2)^(n-1). [Antonio Alberto Olivares, Jun 07 2011]
a(n) = Sum_{k, 0<=k<=n} A103631(n,k)*3^k. - Philippe Deléham, Dec 17 2011
a(n) = A015445(n) + 2*A015445(n-1), n>0. - Ralf Stephan, Jul 21 2013

Extensions

Definition replaced with the Deleham recurrence of Mar 2009 by the Assoc. Editors of the OEIS, Mar 12 2010

A158797 a(n) = a(n-1) + 36*a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 42, 258, 1770, 11058, 74778, 472866, 3164874, 20188050, 134123514, 860893314, 5689339818, 36681499122, 241497732570, 1562031700962, 10255950073482, 66489091308114, 435703293953466, 2829310581045570
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else Self(n-1) + 36*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 22 2021
  • Mathematica
    LinearRecurrence[{1,36},{1,6},30] (* Harvey P. Dale, Apr 30 2013 *)
  • PARI
    Vec((1+5*x)/(1-x-36*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    [(6*i)^n*( chebyshev_U(n, -i/12) - (5*i/6)*chebyshev_U(n-1, -i/12) ) for n in (0..40)] # G. C. Greubel, Dec 22 2021
    

Formula

G.f.: (1+5*x)/(1-x-36*x^2).
a(n) = (6*i)^n*( ChebyshevU(n, -i/12) - (5*i/6)*ChebyshevU(n-1, -i/12) ). - G. C. Greubel, Dec 22 2021

A384640 Expansion of (1-3*x^2) / (1-x-5*x^2+x^3+2*x^4).

Original entry on oeis.org

1, 1, 3, 7, 19, 49, 131, 343, 911, 2397, 6347, 16735, 44251, 116785, 308611, 814815, 2152583, 5684477, 15015355, 39655527, 104742659, 276635985, 730663043, 1929789255, 5096983167, 13461994429, 35555794923, 93909205391, 248032219243, 655098462417, 1730238763395
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 0 in the following graph:
2
/|\
0-1 | 3
\|/
4.
Also, for n>=1, the number of walks of length n-1 starting at vertex 1 in the same graph.

Examples

			a(3)=7 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-2-4, 0-1-4-1, 0-1-4-2, 0-1-4-3.
		

Crossrefs

Cf. A384641 (vertex 2), A384642 (vertex 3), A005824 (missing edge {2,4}), A026597 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[1,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1-3*x^2) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]

A122999 G.f.: 1/(1 - x - 25*x^2).

Original entry on oeis.org

1, 1, 26, 51, 701, 1976, 19501, 68901, 556426, 2278951, 16189601, 73163376, 477903401, 2306987801, 14254572826, 71929267851, 428293588501, 2226525284776, 12933864997301, 68596997116701, 391943622049226
Offset: 0

Views

Author

Roger L. Bagula, Sep 22 2006

Keywords

Crossrefs

Cf. A026597.

Programs

  • Mathematica
    m =5; p[x_] := -1 - x/m + x^2; q[x_] := ExpandAll[x^2*p[1/x]]; Table[ SeriesCoefficient[Series[x/q[x], {x, 0, 30}], n]*m^(n - 1), {n, 0, 30}]
    Join[{a=1,b=1},Table[c=1*b+25*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[1/(1-x-25x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {1,25},{1,1},30] (* Harvey P. Dale, Dec 23 2014 *)
  • Maxima
    makelist(coeff(taylor(1/(1-x-25*x^2), x, 0, n), x, n), n, 0, 20); /* Bruno Berselli, Jun 06 2011 */
    
  • PARI
    Vec(O(x^99)+(1-x-25*x^2)^-1) \\ Charles R Greathouse IV, Jun 06 2011

Formula

a(0)=1, a(1)=1, a(n) = a(n-1) + 25*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
a(n) = (1/2 + sqrt(101)/202)*(1/2 + sqrt(101)/2)^(n-1) + (1/2 - sqrt(101)/202)*(1/2 - sqrt(101)/2)^(n-1). - Antonio Alberto Olivares, Jun 06 2011

Extensions

Edited by N. J. A. Sloane, Sep 26 2006
Definition corrected by R. J. Mathar, Jan 15 2009

A158798 a(n) = a(n-1) + 64*a(n-2), a(0)=1, a(1)=8.

Original entry on oeis.org

1, 8, 72, 584, 5192, 42568, 374856, 3099208, 27089992, 225439304, 1959198792, 16387314248, 141776036936, 1190564148808, 10264230512712, 86460336036424, 743371088849992, 6276832595181128, 53852582281580616, 455569868373172808, 3902135134394332232
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,8]; [n le 2 select I[n] else Self(n-1) + 64*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 22 2021
    
  • Mathematica
    LinearRecurrence[{1,64},{1,8},30] (* Harvey P. Dale, Mar 09 2018 *)
  • Sage
    [(8*i)^n*( chebyshev_U(n, -i/16) - (7*i/8)*chebyshev_U(n-1, -i/16) ) for n in (0..40)] # G. C. Greubel, Dec 22 2021

Formula

G.f.: (1+7*x)/(1-x-64*x^2).
a(n) = (8*i)^n*( ChebyshevU(n, -i/16) - (7*i/8)*ChebyshevU(n-1, -i/16) ). - G. C. Greubel, Dec 22 2021

Extensions

Corrected and extended by Harvey P. Dale, Mar 09 2018

A208765 Triangle of coefficients of polynomials u(n,x) jointly generated with A208766; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 18, 14, 1, 8, 36, 56, 38, 1, 10, 60, 140, 190, 94, 1, 12, 90, 280, 570, 564, 246, 1, 14, 126, 490, 1330, 1974, 1722, 622, 1, 16, 168, 784, 2660, 5264, 6888, 4976, 1606, 1, 18, 216, 1176, 4788, 11844, 20664, 22392, 14454, 4094, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 18 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  4,  6;
  1,  6, 18, 14;
  1,  8, 36, 56, 38;
First five polynomials u(n,x):
  1
  1 + 2x
  1 + 4x + 6x^2
  1 + 6x + 18x^2 + 14x^3
  1 + 8x + 36x^2 + 56x^3 + 38x^4
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, 1, -2, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  4,  6,   0;
  1,  6, 18,  14,   0;
  1,  8, 36,  56,  38,  0;
  1, 10, 60, 140, 190, 94, 0. - _Philippe Deléham_, Mar 18 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]     (* A208765 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]     (* A208766 *)
    Rest[CoefficientList[CoefficientList[Series[(1-x-y*x+2*y*x^2-4*y^2*x^2)/( 1-2*x-y*x+x^2+y*x^2-4*y^2*x^2), {x,0,20}, {y,0,20}], x], y]//Flatten] (* G. C. Greubel, Mar 28 2018 *)

Formula

u(n,x) = u(n-1,x) + 2*x*v(n-1,x),
v(n,x) = 2*x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x-y*x+2*y*x^2-4*y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-4*y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 4*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
T(n,k) = binomial(n-1,k)*A026597(k). (End)

A129710 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 10 subwords.
Row n has 1+floor(n/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,0)=2 for n >= 1.
Sum_{k>=0} k*T(n,k) = A023610(n-2).
Triangle, with zeros omitted, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 14 2012
Riordan array ((1+x)/(1-x), x^2/(1-x)), zeros omitted. - Philippe Deléham, Jan 14 2012

Examples

			T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
  1;
  2;
  2, 1;
  2, 3;
  2, 5, 1;
  2, 7, 4;
  2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
  1;
  2, 0;
  2, 1, 0;
  2, 3, 0, 0;
  2, 5, 1, 0, 0;
  2, 7, 4, 0, 0, 0;
  2, 9, 9, 1, 0, 0, 0;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k) for n >= 1 and 0 <= k <= floor(n/2).
G.f. = G(t,z) = (1+z)/(1-z-tz^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A078050(n), A057079(n), A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Jan 14 2012
T(n,k) = T(n-1,k) + T(n-2,k-1) with T(0,0)=1, T(1,0)=2, T(1,1)=0 and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Jan 14 2012

A384641 Expansion of (1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4).

Original entry on oeis.org

1, 3, 8, 21, 56, 147, 390, 1027, 2718, 7169, 18952, 50025, 132180, 349015, 921986, 2434831, 6431386, 16985525, 44863652, 118490229, 312960192, 826576635, 2183160062, 5766102587, 15229405878, 40223605481, 106238212160, 280594628513, 741103272076, 1957390991519
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 2 in the following graph:
2
/|\
0-1 | 3
\|/
4.

Examples

			a(2)=8 because we have the walks 2-1-0, 2-1-2, 2-1-4, 2-3-2, 2-3-4, 2-4-1, 2-4-2, 2-4-3.
		

Crossrefs

Cf. A384640 (vertices 0, 1), A384642 (vertex 3), A005824 (missing edge {2,4}), A026597 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+2*x-x^3) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]

A384642 Expansion of (1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4).

Original entry on oeis.org

1, 2, 6, 16, 42, 112, 294, 780, 2054, 5436, 14338, 37904, 100050, 264360, 698030, 1843972, 4869662, 12862772, 33971050, 89727304, 236980458, 625920384, 1653153270, 4366320124, 11532205174, 30458811756, 80447210962, 212476424320, 561189257026, 1482206544152
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 3 in the following graph:
2
/|\
0-1 | 3
\|/
4.

Examples

			a(2)=6 because we have the walks 3-2-1, 3-2-3, 3-2-4, 3-4-1, 3-4-2, 3-4-3.
		

Crossrefs

Cf. A384640 (vertices 0, 1), A384641 (vertex 2), A005824 (missing edge {2,4}), A026597 (missing edge {0,1}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|0|1>, <0|1|0|1|1>, <0|0|1|0|1>, <0|1|1|1|0>>^n. <<1,1,1,1,1>>)[4,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x-x^2+x^3) / (1-x-5*x^2+x^3+2*x^4), {x, 0, 32}], x]

A122112 a(n) = 4*a(n-2) - a(n-1), with a(0)=1, a(1)=-2.

Original entry on oeis.org

1, -2, 6, -14, 38, -94, 246, -622, 1606, -4094, 10518, -26894, 68966, -176542, 452406, -1158574, 2968198, -7602494, 19475286, -49885262, 127786406, -327327454, 838473078, -2147782894, 5501675206, -14092806782, 36099507606, -92470734734
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2006

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,-2];; for n in [3..30] do a[n]:=-a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Oct 02 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1+x-4*x^2) )); // G. C. Greubel, Oct 02 2019
    
  • Maple
    seq(coeff(series((1-x)/(1+x-4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 02 2019
  • Mathematica
    LinearRecurrence[{-1,4}, {1,-2}, 30] (* G. C. Greubel, Oct 02 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1+x-4*x^2)) \\ G. C. Greubel, Oct 02 2019
    
  • Sage
    def A122112_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1+x-4*x^2)).list()
    A122112_list(30) # G. C. Greubel, Oct 02 2019
    

Formula

a(n) = (-1)^n * A026597(n).
a(n) = Sum_{k=0..n} (-2)^(n-k) * A055830(n,k).
G.f.: (1-x)/(1+x-4*x^2).
a(n) = (-2*i)^n*( ChebyshevU(n, -i/4) - (i/2)*ChebyshevU(n-1, -i/4) ). - G. C. Greubel, Dec 23 2021
E.g.f.: exp(-x/2)*(17*cosh(sqrt(17)*x/2) - 3*sqrt(17)*sinh(sqrt(17)*x/2))/17. - Stefano Spezia, Apr 03 2023

Extensions

Corrected by T. D. Noe, Nov 07 2006
Previous Showing 31-40 of 42 results. Next