cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 184 results. Next

A340605 Heinz numbers of integer partitions of even positive rank.

Original entry on oeis.org

5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      5: (3)         57: (8,2)       97: (25)
     11: (5)         58: (10,1)      99: (5,2,2)
     14: (4,1)       59: (17)       102: (7,2,1)
     17: (7)         65: (6,3)      103: (27)
     21: (4,2)       66: (5,2,1)    104: (6,1,1,1)
     23: (9)         67: (19)       106: (16,1)
     26: (6,1)       68: (7,1,1)    109: (29)
     31: (11)        73: (21)       110: (5,3,1)
     35: (4,3)       74: (12,1)     111: (12,2)
     38: (8,1)       83: (23)       122: (18,1)
     39: (6,2)       86: (14,1)     124: (11,1,1)
     41: (13)        87: (10,2)     127: (31)
     44: (5,1,1)     91: (6,4)      129: (14,2)
     47: (15)        92: (9,1,1)    133: (8,4)
     49: (4,4)       95: (8,3)      137: (33)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
Allowing any positive rank gives A064173 (A340787).
The odd version is counted by A101707 (A340604).
These partitions are counted by A101708.
The not necessarily positive case is counted by A340601 (A340602).
A001222 counts prime indices.
A061395 gives maximum prime index.
A072233 counts partitions by sum and length.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A064173 counts partitions of negative rank (A340788).
A064174 counts partitions of nonnegative rank (A324562).
A064174 (also) counts partitions of nonpositive rank (A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340692 counts partitions of odd rank (A340603).
- Even -
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&]

Formula

A061395(a(n)) - A001222(a(n)) is even and positive.

A347444 Number of odd-length integer partitions of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 8, 7, 14, 13, 24, 21, 40, 35, 62, 55, 99, 85, 151, 128, 224, 195, 331, 283, 481, 416, 690, 593, 980, 844, 1379, 1189, 1918, 1665, 2643, 2292, 3630, 3161, 4920, 4299, 6659, 5833, 8931, 7851, 11905, 10526, 15805, 13987, 20872, 18560, 27398
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1, ... ,y_k) to be the Product_i y_i^((-1)^(i-1)).
The reverse version (integer reverse-alternating product) is the same.

Examples

			The a(1) = 1 through a(9) = 14 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)        (9)
            (111)  (211)  (221)    (222)    (322)      (332)      (333)
                          (311)    (411)    (331)      (422)      (441)
                          (11111)  (21111)  (421)      (611)      (522)
                                            (511)      (22211)    (621)
                                            (22111)    (41111)    (711)
                                            (31111)    (2111111)  (22221)
                                            (1111111)             (32211)
                                                                  (33111)
                                                                  (42111)
                                                                  (51111)
                                                                  (2211111)
                                                                  (3111111)
                                                                  (111111111)
		

Crossrefs

The reciprocal version is A035363.
Allowing any alternating product gives A027193.
The multiplicative version (factorizations) is A347441.
Allowing any length gives A347446, reverse A347445.
Allowing any length and alternating product > 1 gives A347448.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347453.
The even-length instead of odd-length version is A347704.
A000041 counts partitions.
A000302 counts odd-length compositions, ranked by A053738.
A025047 counts wiggly compositions.
A026424 lists numbers with odd bigomega.
A027187 counts partitions of even length, strict A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts odd-length factorizations.
A347437 counts factorizations with integer alternating product.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]

A349158 Heinz numbers of integer partitions with exactly one odd part.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with exactly one odd prime index. These are also partitions whose conjugate partition has alternating sum equal to 1.
Numbers that are product of a term of A031368 and a term of A066207. - Antti Karttunen, Nov 13 2021

Examples

			The terms and corresponding partitions begin:
      2: (1)         42: (4,2,1)       86: (14,1)
      5: (3)         45: (3,2,2)       93: (11,2)
      6: (2,1)       47: (15)          95: (8,3)
     11: (5)         51: (7,2)         97: (25)
     14: (4,1)       54: (2,2,2,1)     98: (4,4,1)
     15: (3,2)       58: (10,1)        99: (5,2,2)
     17: (7)         59: (17)         103: (27)
     18: (2,2,1)     65: (6,3)        105: (4,3,2)
     23: (9)         67: (19)         106: (16,1)
     26: (6,1)       69: (9,2)        109: (29)
     31: (11)        73: (21)         114: (8,2,1)
     33: (5,2)       74: (12,1)       119: (7,4)
     35: (4,3)       77: (5,4)        122: (18,1)
     38: (8,1)       78: (6,2,1)      123: (13,2)
     41: (13)        83: (23)         126: (4,2,2,1)
		

Crossrefs

These partitions are counted by A000070 up to 0's.
Allowing no odd parts gives A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These are the positions of 1's in A257991.
The even prime indices are counted by A257992.
The conjugate partitions are ranked by A345958.
Allowing at most one odd part gives A349150, counted by A100824.
A047993 ranks balanced partitions, counted by A106529.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340604 ranks partitions of odd positive rank, counted by A101707.
A340932 ranks partitions whose least part is odd, counted by A026804.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?OddQ]==1&]

A344649 Triangle read by rows where T(n,k) is the number of strict integer partitions of 2n with reverse-alternating sum 2k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 1, 3, 3, 2, 1, 0, 1, 0, 1, 4, 4, 3, 2, 1, 0, 1, 0, 1, 5, 6, 4, 3, 2, 1, 0, 1, 0, 1, 7, 7, 6, 4, 3, 2, 1, 0, 1, 0, 1, 8, 10, 8, 6, 4, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So T(n,k) is the number of strict integer partitions of 2n into an odd number of parts whose conjugate has exactly 2k odd parts.
Also the number of reversed strict integer partitions of 2n with alternating sum 2k.

Examples

			Triangle begins:
   1
   0   1
   0   0   1
   0   1   0   1
   0   1   1   0   1
   0   1   2   1   0   1
   0   1   3   2   1   0   1
   0   1   3   3   2   1   0   1
   0   1   4   4   3   2   1   0   1
   0   1   5   6   4   3   2   1   0   1
   0   1   7   7   6   4   3   2   1   0   1
   0   1   8  10   8   6   4   3   2   1   0   1
   0   1  10  13  12   8   6   4   3   2   1   0   1
   0   1  11  18  15  12   8   6   4   3   2   1   0   1
   0   1  14  22  21  16  12   8   6   4   3   2   1   0   1
   0   1  15  29  27  23  16  12   8   6   4   3   2   1   0   1
Row n = 8 counts the following partitions (empty columns indicated by dots):
  .  (8,7,1)  (7,6,3)      (7,5,4)   (9,4,3)   (11,3,2)  (13,2,1)  .  (16)
              (8,6,2)      (8,5,3)   (10,4,2)  (12,3,1)
              (9,6,1)      (9,5,2)   (11,4,1)
              (6,4,3,2,1)  (10,5,1)
Row n = 9 counts the following partitions (empty columns indicated by dots, A..I = 10..18):
  .  981   873     765     954   B43   D32   F21   .  I
           972     864     A53   C42   E31
           A71     963     B52   D41
           65421   A62     C51
           75321   B61
                   84321
		

Crossrefs

The non-reversed version is A152146.
The non-reversed non-strict version is A239830.
Column k = 2 is A343941.
The non-strict version is A344610.
Row sums are A344650.
Right half of even-indexed rows of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==k&]],{n,0,30,2},{k,0,n,2}]

A345196 Number of integer partitions of n with reverse-alternating sum equal to the reverse-alternating sum of their conjugate.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 4, 4, 4, 8, 11, 11, 11, 20, 27, 29, 31, 48, 65, 70, 74, 109, 145, 160, 172, 238, 314, 345, 372, 500, 649, 721, 782, 1019, 1307, 1451, 1577, 2015, 2552, 2841, 3098, 3885, 4867, 5418, 5914, 7318, 9071, 10109, 11050
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. By conjugation, this is also (-1)^(r-1) times the number of odd parts, where r is the greatest part. So a(n) is the number of integer partitions of n of even rank with the same number of odd parts as their conjugate.

Examples

			The a(5) = 1 through a(12) = 11 partitions:
  (311)  (321)  (43)    (44)    (333)    (541)    (65)      (66)
                (2221)  (332)   (531)    (4321)   (4322)    (552)
                (4111)  (2222)  (32211)  (32221)  (4331)    (4332)
                        (4211)  (51111)  (52111)  (4421)    (4422)
                                                  (6311)    (4431)
                                                  (222221)  (6411)
                                                  (422111)  (33222)
                                                  (611111)  (53211)
                                                            (222222)
                                                            (422211)
                                                            (621111)
		

Crossrefs

The non-reverse version is A277103.
Comparing even parts to odd conjugate parts gives A277579.
Comparing signs only gives A340601.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],sats[#]==sats[conj[#]]&]],{n,0,15}]

A332305 Number of compositions (ordered partitions) of n into distinct parts such that number of parts is even.

Original entry on oeis.org

1, 0, 0, 2, 2, 4, 4, 6, 6, 8, 32, 34, 58, 84, 132, 158, 230, 280, 376, 450, 570, 1388, 1556, 2398, 3310, 4920, 6600, 9674, 12122, 16684, 21340, 28110, 34974, 45392, 55208, 69274, 124498, 143676, 204012, 270758, 377966, 493024, 690304, 895434, 1223826, 1562948
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2020

Keywords

Examples

			a(5) = 4 because we have [4, 1], [3, 2], [2, 3] and [1, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[(2 k)! x^(k (2 k + 1))/Product[1 - x^j, {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} (2*k)! * x^(k*(2*k + 1)) / Product_{j=1..2*k} (1 - x^j).
a(n) = A032020(n) - A332304(n).

A344743 Number of integer partitions of 2n with reverse-alternating sum < 0.

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 29, 54, 96, 165, 275, 449, 716, 1123, 1732, 2635, 3955, 5871, 8620, 12536, 18065, 25821, 36617, 51560, 72105, 100204, 138417, 190134, 259772, 353134, 477734, 643354, 862604, 1151773, 1531738, 2029305, 2678650, 3523378, 4618835, 6035240, 7861292
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2021

Keywords

Comments

Conjecture: a(n) >= A236914.
The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So a(n) is the number of even-length partitions of 2n with at least one odd conjugate part. By conjugation, this is also the number of partitions of 2n with greatest part even and at least one odd part.
The alternating sum of a partition is never < 0, so the non-reverse version is A000004.

Examples

			The a(2) = 1 through a(5) = 15 partitions:
  (31)  (42)    (53)      (64)
        (51)    (62)      (73)
        (3111)  (71)      (82)
                (3221)    (91)
                (4211)    (3331)
                (5111)    (4222)
                (311111)  (4321)
                          (5221)
                          (5311)
                          (6211)
                          (7111)
                          (322111)
                          (421111)
                          (511111)
                          (31111111)
		

Crossrefs

The ordered version (compositions not partitions) appears to be A008549.
The Heinz numbers are A119899 /\ A300061.
Even bisection of A344608.
The complementary partitions of 2n are counted by A344611.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001523 counts unimodal compositions (partial sums: A174439).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    sats[y_] := Sum[(-1)^(i - Length[y])*y[[i]], {i, Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]<0&]],{n,0,30,2}]

Formula

a(n) = A058696(n) - A344611(n).
a(n) = sum of left half of even-indexed rows of A344612.

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A347449 Number of integer partitions of n with reverse-alternating product > 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 10, 11, 20, 22, 37, 41, 66, 75, 113, 129, 190, 218, 310, 358, 497, 576, 782, 908, 1212, 1411, 1851, 2156, 2793, 3255, 4163, 4853, 6142, 7159, 8972, 10451, 12989, 15123, 18646, 21689, 26561, 30867, 37556, 43599, 52743, 61161, 73593
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

All such partitions have odd length.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(2) = 1 through a(9) = 11 partitions:
  (2)  (3)  (4)    (5)    (6)      (7)      (8)        (9)
            (211)  (311)  (222)    (322)    (332)      (333)
                          (321)    (421)    (422)      (432)
                          (411)    (511)    (431)      (522)
                          (21111)  (31111)  (521)      (531)
                                            (611)      (621)
                                            (22211)    (711)
                                            (32111)    (32211)
                                            (41111)    (42111)
                                            (2111111)  (51111)
                                                       (3111111)
		

Crossrefs

The strict case is A067659, except that a(0) = a(1) = 0.
The even bisection is A236559.
The non-reverse multiplicative version is A339890, weak A347456.
The case of >= 1 instead of > 1 is A344607.
The opposite version is A344608, also the non-reverse even-length case.
The complement is counted by A347443, non-reverse A119620.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
Reverse version of A347448; also the odd-length case.
The Heinz numbers of these partitions are the complement of A347450.
The multiplicative version (factorizations) is A347705.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions of n with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]

Formula

a(n) = A344607(n) - A119620(n).

A347459 Number of factorizations of n^2 with integer reciprocal alternating product.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 6, 3, 4, 1, 11, 1, 4, 4, 12, 1, 11, 1, 12, 4, 4, 1, 28, 3, 4, 6, 12, 1, 19, 1, 22, 4, 4, 4, 38, 1, 4, 4, 29, 1, 21, 1, 12, 11, 4, 1, 65, 3, 11, 4, 12, 1, 29, 4, 29, 4, 4, 1, 71, 1, 4, 11, 40, 4, 22, 1, 12, 4, 18, 1, 107, 1, 4, 11, 12, 4, 22, 1, 66, 12, 4, 1, 76, 4, 4, 4, 30, 1, 71, 4, 12, 4, 4, 4, 141
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2021

Keywords

Comments

We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All such factorizations have even length.
Image appears to be 1, 3, 4, 6, 11, ... , missing some numbers such as 2, 5, 7, 8, 9, ...
The case of alternating product 1, the case of alternating sum 0, and the reverse version are all counted by A001055.

Examples

			The a(2) = 1 through a(10) = 4 factorizations:
    2*2  3*3  2*8      5*5  6*6      7*7  8*8          9*9      2*50
              4*4           2*18          2*32         3*27     5*20
              2*2*2*2       3*12          4*16         3*3*3*3  10*10
                            2*2*3*3       2*2*2*8               2*2*5*5
                                          2*2*4*4
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 1's are 1 and A000040, squares A001248.
The additive version (partitions) is A000041, the even bisection of A119620.
Partitions of this type are ranked by A028982 and A347451.
The restriction to powers of 2 is A236913, the even bisection of A027187.
The nonsquared nonreciprocal even-length version is A347438.
This is the restriction to perfect squares of A347439.
The nonreciprocal version is A347458, non-squared A347437.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n^2],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e))));
    A347459(n) = A347439(n^2); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A236913(n).
a(n) = A347439(n^2).

Extensions

Data section extended up to a(96) by Antti Karttunen, Jul 28 2024

A026838 Number of partitions of n into distinct parts, the greatest being even.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 83, 96, 111, 128, 148, 170, 195, 224, 256, 292, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859
Offset: 1

Views

Author

Keywords

Comments

Fine's theorem: a(n) - A026837(n) = 1 if n = k(3k+1)/2, = -1 if n = k(3k-1)/2, = 0 otherwise (see A143062).
Also number of partitions of n into an even number of parts and such that parts of every size from 1 to the largest occur. Example: a(8)=3 because we have [3,2,2,1], [2,2,1,1,1,1] and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006

Examples

			a(8)=3 because we have [8],[6,2] and [4,3,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(2*k)*product(1+x^j,j=1..2*k-1),k=1..50): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 04 2006
  • Mathematica
    nn=54;CoefficientList[Series[Sum[x^(2j)Product[1+ x^i,{i,1,2j-1}],{j,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *)

Formula

G.f.: sum(k>=1, x^(2k) * prod(j=1..2k-1, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118301(2*n), a(2*n-1) = A118302(2*n-1); a(n) = A000009(n) - A026837(n). - Reinhard Zumkeller, Apr 22 2006
Previous Showing 101-110 of 184 results. Next