cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A333715 a(n) = [x^(3*n)] ( (1 + x)/(1 - x) )^n.

Original entry on oeis.org

1, 2, 24, 326, 4672, 69002, 1038984, 15856206, 244396544, 3795731282, 59307908024, 931222155030, 14680871849152, 232236016459098, 3684420837693480, 58600075142247326, 934064636705476608, 14917333936933664674, 238641621366613695576, 3823510794994321546214, 61344017874989324388672
Offset: 0

Views

Author

Peter Bala, Apr 03 2020

Keywords

Comments

a(n) is also equal to [x^n] G(x)^n, where G(x) is the o.g.f. of A027307.
Compare with A002003(n) = [x^n] ( (1 + x)/(1 - x) )^n and A103885(n) = [x^(2*n)] ( (1 + x)/(1 - x) )^n = [x^n] S(x)^n, where S(x) is the o.g.f. of the large Schröder numbers A006318.
If we define an operator I acting on power series f(x) = 1 + f_1*x + f_2*x^2 + ... by I(f(x)) = 1/x * Revert( x/f(x) ) then S(x) = I( (1 + x)/(1 - x) ) and G(x) = (I o I)( (1 + x)/(1 - x )).
It can be shown that a(n) satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that a(n) satisfies the stronger congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Some examples of these congruences are given below.
The same congruences may hold more generally for the sequences a(r,s,n) := [x^(r*n)]( (1 + x)/(1 - x) )^(s*n), r a positive integer and s an integer. This is the case a(3,1,n).
For fixed m = 1,2,3,..., we conjecture that the sequence b(n) := a(m*n) satisfies a recurrence of the form P(6*m,n)*b(n+1) + P(6*m,-n)*b(n-1) = Q(3*m,n^2)*b(n), where the polynomials P(6*m,n) and Q(3*m,n^2) have degree 6*m. Conjecturally, the 6*m zeros of the polynomial Q(3*m,n^2) belong to the interval [-1, 1] and 6*m - 4 of these zeros appear to be approximated by the rational numbers +- k/(4*m), where 1 <= k <= 4*m - 3, k not a multiple of 4.

Examples

			Examples of congruences:
a(11) - a(1) = 931222155030 - 2 = (2^2)*(11^3)*163*1073069 == ( mod 11^3 )
a(3*7) - a(3) = 985413034951400888962602 - 326 = (2^2)*(7^4)*263* 390130947874776863 == 0 ( mod 7^3 )
a(5^2) - a(5) = 66292579025690123511768694002 - 69002 = (2^3)*(5^6)*39461* 13439614612035199009 == 0 ( mod 5^6 )
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)*binomial(3*n+k-1,n-1), k = 0..n), n = 0..20);
  • Mathematica
    Table[Binomial[3*n-1, n-1] * Hypergeometric2F1[-n, 3*n, 2*n+1, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2020 *)

Formula

a(n) = Sum_{k = 0..n} C(n,k)*C(3*n+k-1,n-1).
a(n) = (1/3) * Sum_{k = 0..n} C(3*n,n-k)*C(3*n+k-1,k) for n >= 1.
a(n) = (1/3) * [x^n] ( (1 + x)/(1 - x) )^(3*n) for n >= 1.
a(n) = Sum_{k = 1..n} (2^k)*C(n,k)*C(3*n-1,k-1) for n >= 1.
P-recursive:
P(6,n)*a(n+1) + P(6,-n)*a(n-1) = Q(3,n^2)*a(n), where P(6,n) = (2*n-1)*(3*n+1)*(3*n+2)*(3*n+3)*(35*n^2 - 35*n + 6) and the polynomial Q(3,n) = 4*(7805*n^3 - 7132*n^2 + 1559*n - 72).
Congruences: a(p) == 2 ( mod p^3 ) for prime p >= 3.
a(n) ~ (223 + 70*sqrt(10))^n / (2^(3/4) * 5^(1/4) * sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Apr 04 2020
exp( Sum_{n>=1} a(n)*x^n/n ) = B(x) where B(x) = 1 + x*(B(x)^3 + B(x)^4) is the g.f. of A144097. - Paul D. Hanna, May 31 2023

A363006 a(n) = 1/((d-1)*n + 1)*Sum_{i=0..n} binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i), with d = 6.

Original entry on oeis.org

1, 2, 22, 342, 6202, 122762, 2571326, 56031470, 1257199154, 28849835538, 673953255142, 15973925161030, 383186776643946, 9285457458463770, 226959074854361742, 5588974707042304222, 138529985051020001634, 3453373395317346136610, 86526667346028323084726, 2177844556015530807952438
Offset: 0

Views

Author

Michael De Vlieger, May 16 2023

Keywords

Comments

See Yang-Jiang paper, related to large Schröder numbers, which correspond to the formula in the Name, instead with d=2.

Crossrefs

Cf. A006318 (d=2), A027307 (d=3), A144097 (d=4), A260332 (d=5).

Programs

  • Mathematica
    With[{d = 6}, Table[(1/((d - 1) n + 1)) Sum[Binomial[(d - 1) n + 1, n - i] Binomial[(d - 1) n + i, i], {i, 0, n}], {n, 0, 12}] ]
  • PARI
    a(n) = my(d=6); sum(i=0, n, binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i))/((d-1)*n + 1); \\ Michel Marcus, May 16 2023

Formula

G.f. satisfies A(x) = 1 + x * A(x)^5 * (1 + A(x)). - Seiichi Manyama, May 29 2023
From Seiichi Manyama, Aug 09 2023: (Start)
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(6*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * binomial(n,k) * binomial(5*n,k-1) for n > 0. (End)

A364394 G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)).

Original entry on oeis.org

1, 2, -6, 34, -238, 1858, -15510, 135490, -1223134, 11320066, -106830502, 1024144482, -9945711566, 97634828354, -967298498358, 9659274283650, -97119829841854, 982391779220482, -9990160542904134, 102074758837531810, -1047391288012377774, 10788532748880319298
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2023

Keywords

Crossrefs

Programs

  • Maple
    A364394 := proc(n)
        if n = 0 then
            1;
        else
        (-1)^(n-1)*add( binomial(n,k) * binomial(2*n+k-2,n-1),k=0..n)/n ;
        end if;
    end proc:
    seq(A364394(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+k-2, n-1))/n);

Formula

G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A027307.
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n+k-2,n-1) = (-1)^(n-1) * A108424(n) for n > 0.
D-finite with recurrence n*(2*n-1)*a(n) +3*(6*n^2-10*n+3)*a(n-1) +(-46*n^2+227*n-279)*a(n-2) +2*(n-3)*(2*n-7)*a(n-3)=0. - R. J. Mathar, Jul 25 2023
a(n) ~ c*(-1)^(n-1)*4^n*2F1([-n, 2*n-1], [n], -1)*n^(-3/2), with c = 1/(4*sqrt(Pi)) = A087197/4. - Stefano Spezia, Oct 21 2023

A084075 Length of list created by n substitutions k -> Range( -abs(k+1), abs(k-1), 2) starting with {1}.

Original entry on oeis.org

1, 2, 5, 12, 33, 86, 249, 680, 2033, 5722, 17485, 50260, 156033, 455534, 1431281, 4228752, 13412193, 40003058, 127840085, 384232156, 1235575201, 3737280582, 12080678505, 36736735672, 119276490193, 364372758986, 1187542872989
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Examples

			{1}, {-2,0}, {-1,1,3,-1,1}, {0,2,-2,0,-4,-2,0,2,0,2,-2,0}
		

Crossrefs

Cf. A027307, A215067, A034015 (even bisection).

Programs

  • Magma
    I:=[1,2,5,12]; [n le 4 select I[n] else (6*(35*n^2-55*n-76)*Self(n-1) + (275*n^4-770*n^3-203*n^2+1736*n-912)*Self(n-2) -6*(5*n^2+5*n-28)*Self(n-3) + (n-4)*(n-2)*(25*n^2+5*n-48)*Self(n-4))/(n*(n+2)*(25*n^2-45*n-28)): n in [1..41]]; // G. C. Greubel, Nov 24 2022
    
  • Mathematica
    Rest@CoefficientList[InverseSeries[Series[ (-1-6n-8n^2+(1+2n)^2 Sqrt[1+4n])/( 2(n+4n^2+4n^3)), {n, 0, 40}]], n]
    Length/@Flatten/@NestList[ #/.k_Integer:>Range[-Abs[k+1], Abs[k-1], 2] &, {1}, 8]
  • Python
    # replace iterates lists as described in Example.
    def replace(L):
        return [i for k in L for i in range(-abs(k + 1), 1 + abs(k - 1), 2)]
    def a(n):
      L = [1]
      for k in range(n): L=replace(L)
      return len(L)
    print([a(n) for n in range(12)]) # F. Chapoton, Nov 15 2024
  • SageMath
    @CachedFunction
    def a(n): # a = A084075
        if n < 4: return (1, 2, 5, 12)[n]
        else: return (6*(35*n^2 +15*n -96)*a(n-1) +(275*n^4+330*n^3-863*n^2+120*n+126)*a(n-2) -6*(5*n^2+15*n-18)*a(n-3) +(n-3)*(n-1)*(25*n^2+55*n-18)*a(n-4))/((n+1)*(n+3)*(25*n^2+5*n-48))
    [a(n) for n in range(41)] # G. C. Greubel, Nov 24 2022
    

Formula

G.f. is the series reversion of (-1 -6*x -8*x^2 + (1+2*x)^2 * sqrt(1+4*x))/(2*(x +4*x^2 +4*x^3)).
a(2*n) = A027307(n)/2, n >= 1.
a(n) = ( 6*(35*n^2 +15*n -96)*a(n-1) + (275*n^4 +330*n^3 -863*n^2 +120*n +126)*a(n-2) - 6*(5*n^2 +15*n -18)*a(n-3) + (n-3)*(n-1)*(25*n^2 +55*n -18)*a(n-4) )/((n+1)*(n+3)*(25*n^2 +5*n -48)), n >= 4. - G. C. Greubel, Nov 24 2022

A108424 Number of paths from (0,0) to (3n,0) that stay in the first quadrant, consist of steps u=(2,1), U=(1,2), or d=(1,-1) and do not touch the x-axis, except at the endpoints.

Original entry on oeis.org

2, 6, 34, 238, 1858, 15510, 135490, 1223134, 11320066, 106830502, 1024144482, 9945711566, 97634828354, 967298498358, 9659274283650, 97119829841854, 982391779220482, 9990160542904134, 102074758837531810, 1047391288012377774, 10788532748880319298
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

These are the large nu-Schröder numbers with nu=NE(NEE)^(n-1). - Matias von Bell, Jun 02 2021

Examples

			a(2) = 6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
		

Crossrefs

Cf. A006318 (d = 2, signed version at d = 0), A027307 (d = 3), A144097 (d = 4), A260332 (d = 5, conjecturally), A363006 (d = 6).

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A+z*A^2: Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
    a:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1) fi end: seq(a(n),n=1..19);
    # Alternative:
    a := n -> 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1)/n:
    seq(simplify(a(n)), n = 1..21); # Peter Luschny, Jun 14 2021
  • Mathematica
    Table[(n*2^n*Binomial[2*n,n]/((2n-1)*(n+1))) * Sum[(Binomial[n-1,j])^2/ (2^j * Binomial[n+j+1,j]), {j,0,n-1}], {n,1,20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

a(n) = A027307(n-1) + A032349(n).
G.f.: z*A+z*A^2, where A=1+z*A^2+z*A^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3.
a(n) = (n*2^n*C(2*n, n)/((2n-1)(n+1))) * Sum_{j=0..n-1} (C(n-1, j))^2 / (2^j*C(n+j+1,j)).
Recurrence: n*(2*n-1)*a(n) = 3*(6*n^2-10*n+3)*a(n-1) + (46*n^2-227*n+279)*a(n-2) + 2*(n-3)*(2*n-7)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(30*sqrt(5) - 50)*((11 + 5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{i=0..n} (2*n+i-2)!/((n-i)!*(n+i-1)!*i!), n>0. - Vladimir Kruchinin, Feb 16 2013
From Matias von Bell, Jun 02 2021: (Start)
a(n) = 2*Sum_{i>=0} (1/n)*binomial(2*n-2,i)*binomial(3*n-2-i,2*n-1).
a(n) = 2*A344553(n). (End)
a(n) = 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1) / n. - Peter Luschny, Jun 14 2021
From Peter Bala, Jun 17 2023: (Start)
a(n) = (-1)^(n+1) * (1/((d-1)*n + 1))*Sum_{i = 0..n} binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i), with d = -1.
P-recursive: n*(2*n - 1)*(5*n - 8)*a(n) = (110*n^3 - 396*n^2 + 445*n - 150)*a(n-1) + (n - 2)*(2*n - 5)*(5*n - 3)*a(n-2) with a(1) = 2 and a(2) = 6.
The g.f. A(x) = 2*x + 6*x^2 + 34*x^3 + .... Then 1/(1 - A(x)) = 1 + 2*x + 10*x^2 + 66*x^3 + .. is the g.f. of A027307.
(1/x) * the series reversion of x*(1 - A(x)) = 1 + 2*x + 14*x^2 + 134*x^3 + ... is the g.f. of A144097.
(1/x) * the series reversion of x/(1 - A(x)) = 1 - 2*x - 2*x^2 - 6*x^3 - 22*x^4 - 90*x^5 - ... = 1 - x - x*S(x), where S(x) is the g.f. of A006318. (End)

A108426 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k peaks of the form Ud.

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 12, 28, 21, 5, 55, 165, 180, 84, 14, 273, 1001, 1430, 990, 330, 42, 1428, 6188, 10920, 10010, 5005, 1287, 132, 7752, 38760, 81396, 92820, 61880, 24024, 5005, 429, 43263, 245157, 596904, 813960, 678300, 352716, 111384, 19448, 1430, 246675
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Row sums yield A027307.
T(n,n) = A000108(n) (the Catalan numbers).
T(n,0) = A001764(n) = binomial(3n,n)/(2n+1).
Number of Ud peaks in all paths from (0,0) to (3n,0) is given by A108427.

Examples

			Example T(2,1) = 5 because we have udUdd, uUddd, Uddud, Ududd and UUdddd.
Triangle begins:
1;
1,1;
3,5,2;
12,28,21,5;
...
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*binomial(3*n-k,n-1)/n: print(1); for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[If[n == 0, 1, (1/n)*Binomial[n, k]*Binomial[3 n - k, n - 1]], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 29 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0, 1, (1/n)*binomial(n,k) *binomial(3*n-k,n-1)), ", "))) \\ G. C. Greubel, Nov 29 2017

Formula

T(n,k) = (1/n)*binomial(n,k)*binomial(3*n-k,n-1).
G.f.: G = G(t,z) satisfies G=1+z(t+G)G^2.

A336534 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 6, 2, 1, 2, 10, 22, 2, 1, 2, 14, 66, 90, 2, 1, 2, 18, 134, 498, 394, 2, 1, 2, 22, 226, 1482, 4066, 1806, 2, 1, 2, 26, 342, 3298, 17818, 34970, 8558, 2, 1, 2, 30, 482, 6202, 52450, 226214, 312066, 41586, 2, 1, 2, 34, 646, 10450, 122762, 881970, 2984206, 2862562, 206098, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 25 2020

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1, ...
  2,   2,    2,     2,     2,      2, ...
  2,   6,   10,    14,    18,     22, ...
  2,  22,   66,   134,   226,    342, ...
  2,  90,  498,  1482,  3298,   6202, ...
  2, 394, 4066, 17818, 52450, 122762, ...
		

Crossrefs

Columns k=0-3 give A040000, A006318, A027307, A144097.
If Michael D. Weiner's conjecture on A260332 is correct, column 4 is A260332 for n > 0.
Main diagonal gives A336537.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k * (1 + A_k(x)).
T(n,k) = (1/n) * Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.
T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
T(n,k) = binomial(1+k*n, n)*hypergeom([-n, 1+k*n], [2+(k-1)*n], -1)/(1 + k*n) for k > 0. - Stefano Spezia, Aug 09 2025

A363304 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^4 + A(x)^7).

Original entry on oeis.org

1, 2, 22, 350, 6538, 133658, 2895214, 65294502, 1516963346, 36056007602, 872615973766, 21430572885422, 532737957899290, 13379121740808266, 338941379999841758, 8651415618928816886, 222278432539991439906, 5743974149517874477922, 149192980850883703986166
Offset: 0

Views

Author

Paul D. Hanna, May 29 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + 1516963346*x^8 + 36056007602*x^9 + ...
where A(x) = 1 + x*(A(x)^4 + A(x)^7).
RELATED SERIES.
A(x)^4 = 1 + 8*x + 112*x^2 + 1960*x^3 + 38528*x^4 + 813064*x^5 + 17998512*x^6 + 412364968*x^7 + ...
A(x)^7 = 1 + 14*x + 238*x^2 + 4578*x^3 + 95130*x^4 + 2082150*x^5 + 47295990*x^6 + 1104598378*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f.: A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = 1 + x*(A(x)^4 + A(x)^7).
(2) a(n) = Sum_{k=0..n} binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) for n >= 0.

A071949 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 2, 1, 4, 10, 1, 6, 24, 66, 1, 8, 42, 172, 498, 1, 10, 64, 326, 1360, 4066, 1, 12, 90, 536, 2706, 11444, 34970, 1, 14, 120, 810, 4672, 23526, 100520, 312066, 1, 16, 154, 1156, 7410, 42024, 211546, 911068, 2862562, 1, 18, 192, 1582, 11088, 69002, 387456, 1951494, 8457504, 26824386
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle begins:
  1;
  1, 2;
  1, 4, 10;
  1, 6, 24,  66;
  1, 8, 42, 172, 498;
  ...
		

Crossrefs

T(n, n)=A027307(n).

Programs

  • Maple
    T := proc(n,k) if k>0 and k<=n then (n-k+1)*sum(2^(j+1)*binomial(k,j+1)*binomial(n+k,j),j=0..k-1)/k elif k=0 then 1 else 0 fi end: seq(seq(T(n,k),k=0..n),n=0..10);
  • Mathematica
    T[_, 0] = 1;
    T[n_, n_] := T[n, n] = T[n, n-1] + T[n+1, n-1];
    T[n_, k_] /; 0 <= k < n := T[n, k] = T[n, k-1] + T[n+1, k-1] + T[n-1, k];
    T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2019 *)

Formula

T(n, k) = (n-k+1)*(Sum_{j=0..k-1} (2^(j+1)*binomial(k, j+1)*binomial(n+k, j)))/k for 0n.
T(n,0) = 1, T(n,n) = T(n,n-1) + T(n+1,n-1), otherwise T(n,k) = T(n,k-1) + T(n+1,k-1) + T(n-1,k). [Gerald McGarvey, Oct 09 2008]

Extensions

Edited by Emeric Deutsch, Mar 04 2004

A084078 Length of list created by n substitutions k -> Range[-abs(k+1), abs(k-1), 2] starting with {0}.

Original entry on oeis.org

1, 2, 4, 10, 24, 66, 172, 498, 1360, 4066, 11444, 34970, 100520, 312066, 911068, 2862562, 8457504, 26824386, 80006116, 255680170, 768464312, 2471150402, 7474561164, 24161357010, 73473471344, 238552980386, 728745517972
Offset: 0

Views

Author

Wouter Meeussen, May 11 2003

Keywords

Examples

			{0}, {-1,1}, {0,2,-2,0}, {-1,1,-3,-1,1,-1,1,3,-1,1}
		

Crossrefs

Programs

  • Magma
    I:=[1,2,4,10]; [n le 4 select I[n] else (6*(35*n^2-125*n+14)*Self(n-1) + (275*n^4 -1870*n^3 +3757*n^2 -1268*n -1806)*Self(n-2) -6*(5*n^2-5*n-28)*Self(n-3) + (n-5)*(n-3)*(25*n^2-45*n-28)*Self(n-4))/((n-1)*(n+1)*(25*n^2-95*n+42)): n in [1..41]]; // G. C. Greubel, Nov 24 2022
    
  • Mathematica
    Join[{1}, 2*Rest@CoefficientList[InverseSeries[Series[(-1 -6*n -8*n^2 + (1+ 2*n)^2*Sqrt[1+4*n])/(2*(n +4*n^2 +4*n^3)), {n, 0, 40}]], n]]
    Length/@ Flatten/@ NestList[# /. k_Integer :> Range[-Abs[k+1], Abs[k-1], 2] &, {0}, 12]
  • Python
    def replace(L): return [i for k in L for i in range(-abs(k + 1), 1 + abs(k - 1), 2)]
    def aList(upto, L=[0]): return [1] + [len((L := replace(L))) for _ in range(upto)]
    print(aList(12))  # Peter Luschny, Nov 16 2024
  • SageMath
    @CachedFunction
    def a(n): # a = A084078
        if (n<4): return (1,2,4,10)[n]
        else: return (6*(35*n^2 -55*n -76)*a(n-1) +(275*n^4-770*n^3-203*n^2+1736*n-912)*a(n-2) -6*(5*n^2+5*n-28)*a(n-3) +(n-4)*(n-2)*(25*n^2+5*n-48)*a(n-4))/(n*(n+2)*(25*n^2-45*n-28))
    [a(n) for n in range(41)] # G. C. Greubel, Nov 24 2022
    

Formula

a(2*n-1) = A027307(n), n >= 1.
a(n) = 2*A084075(n-1), n >= 1.
a(n) = ( 6*(35*n^2 -55*n -76)*a(n-1) + (275*n^4 -770*n^3 -203*n^2 +1736*n -912)*a(n-2) - 6*(5*n^2 +5*n -28)*a(n-3) + (n-4)*(n-2)*(25*n^2+5*n-48)*a(n-4) )/(n*(n+2)*(25*n^2 -45*n -28)), for n >= 4. - G. C. Greubel, Nov 24 2022
a(2*n) = A032349(n+1), n >= 0. - Alexander Burstein, Nov 19 2023
Previous Showing 21-30 of 72 results. Next