cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 72 results. Next

A107708 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).

Original entry on oeis.org

1, 3, 18, 144, 1323, 13176, 138348, 1507977, 16900650, 193536864, 2254630788, 26635735440, 318350663748, 3842488208997, 46770206742342, 573435609537600, 7075551692662875, 87794803094586336, 1094807464312435344
Offset: 0

Views

Author

Emeric Deutsch, Jun 10 2005

Keywords

Examples

			a(1)=3 because we have H, uD and Udd, where H=(3,0), u=(2,1), U=(1,2) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    a:=n->(1/n)*sum(3^j*binomial(n,j)*binomial(n+j,2*n+1-j),j=ceil((n+1)/2)..n): 1,seq(a(n),n=1..22);
  • Mathematica
    Flatten[{1,Table[1/n*Sum[3^j*Binomial[n, j]*Binomial[n+j, 2n+1-j], {j,Floor[(n+1)/2],n}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 17 2014 *)
  • PARI
    concat([1], for(n=1,50, print1((1/n)*sum(j=floor((n+1)/2),n, 3^j*binomial(n,j)*binomial(n+j,2*n+1-j)), ", "))) \\ G. C. Greubel, Mar 16 2017

Formula

a(n) = (1/n)*Sum(3^j*binomial(n, j)*binomial(n+j, 2n+1-j), j=ceiling((n+1)/2)..n) for n >= 1; a(0)=1.
G.f. = (2/3)w*sin((1/3)*arcsin((36-7z)/2/(3-2z)/w))-1/3, where w=sqrt((3-2z)/z).
Recurrence: 2*n*(2*n+1)*(17*n-25)*a(n) = 4*(238*n^3 - 588*n^2 + 395*n - 72)*a(n-1) - 12*(n-2)*(34*n^2 - 67*n + 21)*a(n-2) + 3*(n-3)*(n-2)*(17*n - 8)*a(n-3). - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (1/204)*sqrt(102)*sqrt((134963 + 21573*sqrt(17))^(1/3) * ((134963 + 21573*sqrt(17))^(2/3) + 2176 + 68*(134963 + 21573*sqrt(17))^(1/3))) / ((134963 + 21573*sqrt(17))^(1/3)*sqrt(Pi)) * 6^(-n) * ((19009 + 153*sqrt(17))^(2/3) + 712 + 28*(19009 + 153*sqrt(17))^(1/3))^n * (19009 + 153*sqrt(17))^(-n/3)*(1/n)^(3/2). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence 8*n*(2*n+1)*a(n) +2*(-106*n^2+97*n-18)*a(n-1) +36*(-2*n^2+12*n-15)*a(n-2) +12*(5*n-14)*(n-3)*a(n-3) -9*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x) + A(x)^2). - Seiichi Manyama, Apr 01 2024

A108425 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k peaks (i.e., ud and Ud's).

Original entry on oeis.org

2, 4, 6, 8, 36, 22, 16, 144, 248, 90, 32, 480, 1600, 1560, 394, 64, 1440, 7840, 14400, 9420, 1806, 128, 4032, 32480, 95760, 115416, 55692, 8558, 256, 10752, 120064, 517440, 986272, 860832, 325360, 41586, 512, 27648, 408576, 2419200, 6668928
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Row sums yield A027307. T(n,n) = A006318(n) (the large Schroeder numbers; asks for a bijective proof). T(n,1) = 2^n.

Examples

			Example T(2,1)=4 because we have uudd, uUddd, Uuddd and UUdddd.
Triangle begins:
   2;
   4,   6;
   8,  36,  22;
  16, 144, 248,  90;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->(1/n)*binomial(n,k)*sum(2^(n-j)*binomial(n,j)*binomial(n,k-1-j),j=0..k-1): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Table[(1/n) Binomial[n, k] Sum[2^(n - j) Binomial[n, j] Binomial[n, k - 1 - j], {j, 0, k - 1}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Oct 06 2015 *)

Formula

T(n, k) = (1/n)binomial(n, k)*Sum_{j=0..k-1} 2^(n-j)*binomial(n, j)*binomial(n, k-1-j).
G.f.: G = G(t, z) satisfies zG^3 + tzG^2 - (1 + z - tz)G + 1 = 0.

A108431 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k hills (a hill is either a ud or a Udd starting at the x-axis).

Original entry on oeis.org

1, 0, 2, 6, 0, 4, 34, 24, 0, 8, 274, 136, 72, 0, 16, 2266, 1168, 408, 192, 0, 32, 19738, 9880, 3720, 1088, 480, 0, 64, 177642, 87840, 32088, 10496, 2720, 1152, 0, 128, 1640050, 802216, 291048, 92096, 27680, 6528, 2688, 0, 256, 15445690, 7492240
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Row sums yield A027307. T(n,0) = A108432(n). T(n,n) = 2^n.

Examples

			Example T(2,2)=4 because we have udud, udUdd, Uddud and UddUdd.
Triangle begins:
1;
0,2;
6,0,4;
34,24,0,8;
...
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-z*A+2*z-2*z*t-z*A^2): Gserz:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 10 do P[n]:=sort(coeff(Gserz,z^n)) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
         `if`(x=0, 1, b(x-1, y-1, t)*`if`(t and y=1, z, 1)+
          b(x-1, y+2, is(y=0))+b(x-2, y+1, is(y=0)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n))(b(3*n, 0, false)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y<0 || y>x, 0, If[x == 0, 1, b[x-1, y-1, t]*If[t && y == 1, z, 1] + b[x-1, y+2, y == 0] + b[x-2, y+1, y == 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][b[ 3*n, 0, False]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 25 2015, after Alois P. Heinz *)

Formula

G.f.: 1/(1-2tz+2z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

A108432 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no hills (a hill is either a ud or a Udd starting at the x-axis).

Original entry on oeis.org

1, 0, 6, 34, 274, 2266, 19738, 177642, 1640050, 15445690, 147813706, 1433309194, 14052298690, 139063589370, 1387288675002, 13936344557354, 140859338668306, 1431424362057018, 14616361066692778, 149892742974500042, 1543146417012350050, 15942622531081651578
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Column 0 of A108431.
The radius of convergence of g.f. y(x) is r = (5*sqrt(5)-11)/2, with y(r) = (11*sqrt(5)+23)/38. - Vaclav Kotesovec, Mar 17 2014

Examples

			a(2)=6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
		

Crossrefs

Programs

  • Maple
    g:=1/(1+2*z-z*A-z*A^2): A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3:gser:=series(g,z=0,27): 1,seq(coeff(gser,z^n),n=1..24);
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, `if`(t and y=1, 0, b(x-1, y-1, t))+
          b(x-1, y+2, is(y=0))+b(x-2, y+1, is(y=0))))
        end:
    a:= n-> b(3*n, 0, false):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    CoefficientList[Series[9/(3 + 18*x + 2*(3+x)*Cos[2/3*ArcSin[Sqrt[x]*(18+x)/(3+x)^(3/2)]] - 2*x*Sqrt[(3+x)/x]*Sin[1/3*ArcSin[Sqrt[x]*(18+x)/(3+x)^(3/2)]]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 17 2014 *)
  • PARI
    {a(n)=local(y=1); for(i=1, n, y=-(-1 + 6*x*y - 5*x*y^2 - 12*x^2*y^2 - x*y^3 + 6*x^2*y^3 + 8*x^3*y^3) + (O(x^n))^3); polcoeff(y, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014

Formula

G.f.: 1/(1+2z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
G.f. y(x) satisfies: -1 + y + 6*x*y - 5*x*y^2 - 12*x^2*y^2 - x*y^3 + 6*x^2*y^3 + 8*x^3*y^3 = 0. - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (11+5*sqrt(5))^n * sqrt(273965 + 122523*sqrt(5)) / (361 * sqrt(5*Pi) * n^(3/2) * 2^(n+3/2)). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence 4*n*(2*n+1)*a(n) +3*(-70*n^2+83*n-34)*a(n-1) +11*(154*n^2-436*n+327)*a(n-2) +3*(-1042*n^2+4875*n-4627)*a(n-3) +2*(-4016*n^2+18260*n-21399)*a(n-4) +12*(-206*n^2+1383*n-2322)*a(n-5) -80*(n-4)*(2*n-9)*a(n-6)=0. - R. J. Mathar, Jul 26 2022

A108433 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have k hills of the form ud (a hill is either a ud or a Udd starting at the x-axis).

Original entry on oeis.org

1, 1, 1, 7, 2, 1, 47, 15, 3, 1, 361, 108, 24, 4, 1, 2977, 865, 184, 34, 5, 1, 25775, 7334, 1533, 276, 45, 6, 1, 231103, 64767, 13359, 2387, 385, 57, 7, 1, 2127409, 589368, 120376, 21368, 3450, 512, 70, 8, 1, 19990241, 5488033, 1112424, 196484, 31706
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Row sums yield A027307. T(n,0)=A108434(n). A027307, A108432, A108433, A108434.

Examples

			Example T(2,1)=2 because we have udUdd and Uddud.
Triangle begins:
1;
1,1;
7,2,1;
47,15,3,1;
361,108,24,4,1;
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-z*A+z-t*z-z*A^2): Gserz:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 10 do P[n]:=sort(coeff(Gserz,z^n)) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
         `if`(x=0, 1, b(x-1, y-1, t)*`if`(t and y=1, z, 1)+
          b(x-1, y+2, false)+b(x-2, y+1, is(y=0)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n))(b(3*n, 0, false)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0 || y > x, 0, If[x == 0, 1, b[x - 1, y - 1, t]*If[t && y == 1, z, 1] + b[x - 1, y + 2, False] + b[x - 2, y + 1, y == 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][b[3*n, 0, False]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 29 2016, after Alois P. Heinz *)

Formula

G.f.: 1/(1-tz+z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

A108445 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k pyramids (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).

Original entry on oeis.org

1, 0, 2, 4, 2, 4, 32, 18, 8, 8, 252, 146, 60, 24, 16, 2112, 1186, 496, 176, 64, 32, 18484, 10146, 4148, 1488, 480, 160, 64, 166976, 90162, 36216, 12792, 4160, 1248, 384, 128, 1545548, 824114, 326828, 113960, 36720, 11104, 3136, 896, 256, 14583808, 7699394
Offset: 0

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

Row sums yield A027307. Column 0 yields A108449. Number of pyramids in all paths from (0,0) to (3n,0) is given by A108450

Examples

			T(2,1)=2 because we have uudd and UUdddd.
Triangle begins:
1;
0,2;
4,2,4;
32,18,8,8;
252,146,60,24,16;
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=(1-z)/(1+z-2*t*z-z*(1-z)*A*(1+A)): Gser:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form

Formula

G.f. =(1-z)/[1+z-2tz-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

A108449 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).

Original entry on oeis.org

1, 0, 4, 32, 252, 2112, 18484, 166976, 1545548, 14583808, 139774180, 1356966240, 13316740764, 131890671680, 1316627340564, 13234192747648, 133829733962732, 1360586260341248, 13898403178004420, 142578916276009632
Offset: 0

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

Column 0 of A108445.

Examples

			a(2)=4 because the paths uUddd, Ududd, UdUddd and Uuddd have no pyramids.
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=(1-z)/(1+z-z*(1-z)*A*(1+A)): gser:=series(g,z=0,24): 1,seq(coeff(gser,z^n),n=1..21);
  • PARI
    {a(n)=local(y=1); for(i=1, n, y = -(-1 + 3*x - 3*x^2 + x^3 + 3*x*y - 9*x^2*y + 5*x^3*y - 5*x*y^2 - x^2*y^2 + 5*x^3*y^2 + x^4*y^2 - x*y^3 + 9*x^2*y^3 - 3*x^3*y^3 + 3*x^4*y^3) + (O(x^n))^4); polcoeff(y, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 18 2014

Formula

G.f.=(1-z)/[1+z-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
G.f. y(x) satisfies: -1 + 3*x - 3*x^2 + x^3 + y + 3*x*y - 9*x^2*y + 5*x^3*y - 5*x*y^2 - x^2*y^2 + 5*x^3*y^2 + x^4*y^2 - x*y^3 + 9*x^2*y^3 - 3*x^3*y^3 + 3*x^4*y^3 = 0. - Vaclav Kotesovec, Mar 18 2014
a(n) ~ (11+5*sqrt(5))^n * sqrt(1738885 + 811683*sqrt(5)) / (961*sqrt(5*Pi) *n^(3/2)*2^(n+3/2)). - Vaclav Kotesovec, Mar 18 2014
Conjecture D-finite with recurrence +n*(2*n+1)*(431*n-2895)*a(n) +2*(-9395*n^3+68622*n^2-64084*n+26109)*a(n-1) +2*(59288*n^3-508196*n^2+1044822*n-574587)*a(n-2) +2*(-94965*n^3+1070605*n^2-3607435*n+3485484)*a(n-3) +4*(29036*n^3-351474*n^2+1402336*n-1970505)*a(n-4) +6*(-6703*n^3+63052*n^2-99178*n-237177)*a(n-5) +6*(1012*n^3-14914*n^2+74580*n-127341)*a(n-6) +6*(1127*n^3-21429*n^2+135199*n-282762
)*a(n-7) +9*(29*n-165)*(2*n-15)*(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022

A363305 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^5 + A(x)^9).

Original entry on oeis.org

1, 2, 28, 576, 13968, 371280, 10465152, 307252032, 9295409664, 287758274304, 9071667965184, 290237226038272, 9399819302979584, 307570021821937664, 10152439243763290112, 337658352835320934400, 11304320019217804476416, 380650592731460987617280
Offset: 0

Views

Author

Paul D. Hanna, May 29 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 28*x^2 + 576*x^3 + 13968*x^4 + 371280*x^5 + 10465152*x^6 + 307252032*x^7 + 9295409664*x^8 + ...
where A(x) = 1 + x*(A(x)^5 + A(x)^9).
RELATED SERIES.
A(x)^5 = 1 + 10*x + 180*x^2 + 4080*x^3 + 104160*x^4 + 2858352*x^5 + 82336320*x^6 + 2455727040*x^7 + ...
A(x)^9 = 1 + 18*x + 396*x^2 + 9888*x^3 + 267120*x^4 + 7606800*x^5 + 224915712*x^6 + 6839682624*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*binomial(5*n+4*k+1, n)/(5*n+4*k+1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f.: A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = 1 + x*(A(x)^5 + A(x)^9).
(2) a(n) = Sum_{k=0..n} binomial(n, k)*binomial(5*n+4*k+1, n)/(5*n+4*k+1) for n >= 0.

A033296 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).

Original entry on oeis.org

1, 1, 6, 42, 326, 2706, 23526, 211546, 1951494, 18366882, 175674054, 1702686090, 16686795846, 165079509042, 1646340228006, 16534463822010, 167081444125702, 1697551974416706, 17330661859937670, 177699201786231530
Offset: 0

Views

Author

Keywords

Examples

			G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ...
		

Crossrefs

Programs

  • PARI
    /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */
    {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C,x,x*C^3)), n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 28 2023

Formula

G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - Paul D. Hanna, May 28 2023]
D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
From Paul D. Hanna, May 28 2023: (Start)
G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
G.f. A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = C(x*C(x)^3) is the g.f. of A363308, and C(x) is the g.f. of the Catalan numbers (A000108). (End)

A108427 Number of peaks of the form Ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1).

Original entry on oeis.org

1, 9, 85, 833, 8361, 85305, 880685, 9173505, 96220561, 1014889769, 10753517061, 114375683009, 1220435354425, 13058529727833, 140059477112925, 1505357362548737, 16209464357137953, 174827809500822345, 1888383038494338485, 20424130116241366593, 221164921352046545609, 2397512484385887298681
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Examples

			a(2)=9 because we have ud(Ud)d, u(Ud)dd, (Ud)dud, (Ud)d(Ud)d, (Ud)udd, (Ud)(Ud)dd, U(Ud)ddd (the peaks of the form Ud shown between parentheses).
G.f. = x + 9*x^2 + 85*x^3 + 833*x^4 + 8361*x^5 + 85305*x^6 + 880685*x^7 + ... - _Michael Somos_, Jul 01 2018
		

Crossrefs

Programs

  • Maple
    seq(add(k*binomial(n,k)*binomial(3*n-k,n-1)/n,k=0..n),n=1..22);
    a := n -> binomial(3*n-1,n-1)*hypergeom([1-n,-2*n], [1-3* n], -1); seq(round(evalf(a(n),32)), n=1..22); # Peter Luschny, Oct 06 2015
  • Mathematica
    Table[1/n*Sum[k*Binomial[n, k]*Binomial[3n - k, n-1], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
    a[n_] :=  HypergeometricPFQ[{-n, n, -n + 1}, {1/2, 1}, 1];
    Table[a[n], {n, 1, 22}] (* Peter Luschny, Mar 14 2018 *)
    a[ n_] := JacobiP[n - 1, n + 1, 0, 3]; (* Michael Somos, Jul 01 2018 *)
  • Maxima
    G(z):=z*((2/3)*sqrt((z+3)/z)*sin((1/3)*asin(sqrt(z)*(z+18) / (z+3)^(3/2)))+2/3);
    taylor(diff(G(z),z,1)/G(z)-1/z,z,0,20); /* Vladimir Kruchinin, Oct 06 2015 */
  • PARI
    a(n) = (1/n)*sum(k=0,n,k*binomial(n, k)*binomial(3*n-k, n-1)); \\ Joerg Arndt, May 15 2013
    

Formula

a(n) = (1/n)*Sum_{k=0..n} k*binomial(n, k)*binomial(3n-k, n-1).
Recurrence: 9*n*(2*n-3)*a(n) = (202*n^2 - 414*n + 185)*a(n-1) - (26*n^2 - 175*n + 255)*a(n-2) - 2*(n-3)*(2*n-5)*a(n-3), for n>3. - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(30*sqrt(5)-50)*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012. Equivalently, a(n) ~ phi^(5*n - 1) / (2* 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
G.f.: A(x) = 1/2*(x*B'(x)/B(x)-1), where B(x) satisfies B(x) = x*((1-2*B(x))/(2*(1-4*B(x))) + 1/(2*sqrt(1-4*B(x)))). - Vladimir Kruchinin, Oct 06 2015
a(n) = binomial(3*n-1, n-1)*hypergeom([1-n, -2*n], [1-3*n], -1). - Peter Luschny, Oct 06 2015
a(n) = hypergeom([-n, n, -n + 1], [1/2, 1], 1). - Peter Luschny, Mar 14 2018
a(n) = P(n-1, n+1, 0, 3), where P is the Jacobi Polynomial. - Richard Turk, Jun 25 2018
Previous Showing 31-40 of 72 results. Next