cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A364159 Number of integer partitions of n - 1 containing fewer 1's than any other part.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 15, 20, 23, 32, 40, 50, 61, 82, 95, 126, 149, 188, 228, 292, 337, 430, 510, 633, 748, 933, 1083, 1348, 1579, 1925, 2262, 2761, 3197, 3893, 4544, 5458, 6354, 7634, 8835, 10577, 12261, 14546, 16864, 19990, 23043, 27226, 31428
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

Also integer partitions of n with least co-mode 1. Here, we define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (221)    (321)     (331)      (431)
                            (11111)  (2211)    (421)      (521)
                                     (111111)  (2221)     (3221)
                                               (1111111)  (3311)
                                                          (22211)
                                                          (11111111)
		

Crossrefs

For mode instead of co-mode we have A241131, ranks A360015.
The case with only one 1 is A364062, ranks A364061.
Counts partitions ranked by A364158.
Counts positions of 1's in A364191, high A364192.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n-1],Count[#,1]
    				

A027337 Number of partitions of n that do not contain 3 as a part.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 59, 79, 99, 130, 162, 209, 259, 330, 407, 512, 628, 783, 956, 1181, 1435, 1760, 2129, 2594, 3124, 3784, 4539, 5468, 6534, 7834, 9327, 11132, 13208, 15701, 18568, 21989, 25923, 30592, 35960, 42297, 49579, 58139, 67967
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of partitions of n with less than three 1's. - Geoffrey Critzer, Jun 20 2014

Crossrefs

Column k=0 of A263232.
Column 3 of A175788.

Programs

  • Mathematica
    nn=49;CoefficientList[Series[(1-x^3)Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1-x^3)/eta(x+x*O(x^n)),n))

Formula

G.f.: (1-x^3) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n) - A000041(n-3).
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 3*Pi/(2*sqrt(6)))/sqrt(n) + (37/8 + 9/(2*Pi^2) + 1801*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

A363745 Number of integer partitions of n whose rounded-down mean is 2.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 3, 4, 10, 6, 16, 21, 24, 32, 58, 47, 85, 111, 119, 158, 248, 217, 341, 442, 461, 596, 867, 792, 1151, 1465, 1506, 1916, 2652, 2477, 3423, 4298, 4381, 5488, 7334, 6956, 9280, 11503, 11663, 14429, 18781, 17992, 23383, 28675, 28970, 35449, 45203
Offset: 0

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (2)  .  (22)  (32)  (222)  (322)  (332)   (3222)  (3322)
          (31)  (41)  (321)  (331)  (422)   (3321)  (3331)
                      (411)  (421)  (431)   (4221)  (4222)
                             (511)  (521)   (4311)  (4321)
                                    (611)   (5211)  (4411)
                                    (2222)  (6111)  (5221)
                                    (3221)          (5311)
                                    (3311)          (6211)
                                    (4211)          (7111)
                                    (5111)          (22222)
                                                    (32221)
                                                    (33211)
                                                    (42211)
                                                    (43111)
                                                    (52111)
                                                    (61111)
		

Crossrefs

For 1 instead of 2 we have A025065, ranks A363949.
The high version is A026905 reduplicated, ranks A363950.
Column k = 2 of A363945.
These partitions have ranks A363954.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Floor[Mean[#]]==2&]],{n,0,30}]

A104384 Number of partitions of triangular numbers n*(n+1)/2 into (n-2) distinct parts for n>=3.

Original entry on oeis.org

1, 4, 12, 27, 57, 110, 201, 352, 598, 984, 1586, 2503, 3882, 5928, 8932, 13287, 19551, 28472, 41078, 58754, 83372, 117417, 164230, 228212, 315190, 432817, 591130, 803192, 1086035, 1461680, 1958596, 2613417, 3473190, 4598073, 6064920, 7971480
Offset: 3

Views

Author

Paul D. Hanna, Mar 04 2005

Keywords

Comments

In triangle A104382, equals the second diagonal down from the main diagonal.
Also equals a diagonal with slope -3 in the Partition Numbers triangle A008284, found at n = 3+3k, or T(3+3k,k) for k >=1. - Richard R. Forberg, Dec 02 2014

Crossrefs

Programs

  • PARI
    {a(n)=if(n<3,0,polcoeff(polcoeff( prod(i=1,n*(n+1)/2,1+y*x^i,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2,x),n-2,y))}

Formula

From Álvar Ibeas, Jul 23 2020: (Start)
Writing p(m) for A000041(m),
a(n) = p(2n-1) - A000070(n) + 1 and
a(n+1) - a(n) = p(2*n+1) - p(2*n-1) - p(n+1) = A027336(2*n+1) - p(n+1).
(End)

A174455 Number of partitions where the number of 1's and 2's are equal.

Original entry on oeis.org

1, 0, 0, 2, 1, 1, 4, 3, 4, 8, 8, 10, 17, 18, 23, 34, 39, 48, 67, 78, 97, 127, 151, 185, 237, 281, 343, 428, 511, 616, 759, 902, 1084, 1315, 1562, 1863, 2242, 2649, 3147, 3752, 4424, 5222, 6190, 7266, 8545, 10062, 11776, 13782, 16157, 18832, 21964, 25622, 29777, 34589, 40200, 46556, 53912
Offset: 0

Views

Author

Joerg Arndt, Nov 28 2010

Keywords

Comments

From Omar E. Pol, Jan 19 2013: (Start)
Column 3 of triangle A220504.
With offset 3, a(n) is also the number of appearances of 3 as the smallest part in all partitions of n.
Also consider the sequence formed by [0, 0] together with this sequence, with offset 1, then it appears that A027336(n) = Sum_{j=1..3} a(n+j), n >= 0.
(End)

Examples

			a(8)=9, there are 8 such partitions of 9, they are
  #1:    9 =  3* 1 + 3* 2 + 0    + 0    + 0    + 0    + 0    + 0    + 0
  #2:    9 =  2* 1 + 2* 2 + 1* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #3:    9 =  1* 1 + 1* 2 + 2* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #4:    9 =  0    + 0    + 3* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #5:    9 =  0    + 0    + 0    + 1* 4 + 1* 5 + 0    + 0    + 0    + 0
  #6:    9 =  1* 1 + 1* 2 + 0    + 0    + 0    + 1* 6 + 0    + 0    + 0
  #7:    9 =  0    + 0    + 1* 3 + 0    + 0    + 1* 6 + 0    + 0    + 0
  #8:    9 =  0    + 0    + 0    + 0    + 0    + 0    + 0    + 0    + 1* 9
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
          else `if`(i=3 and irem(n, 3, 'r')=0, r, 0); for j from 0
          to n/i do %+b(n-i*j, i-1) od; % fi
        end:
    a:= n-> b(n+3, n+3):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 20 2013
  • Mathematica
    (* See A240056. - Clark Kimberling, Mar 31 2014 *)
    m = 66; gf = 1/((1-x^3)*Product[1-x^n, {n, 3, m}]) + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2015, after Joerg Arndt *)
  • PARI
    N=66;  x='x+O('x^N);
    gf=1/( (1-x^3) * prod(n=3,N, 1-x^n) );
    Vec(gf)
    /* Joerg Arndt, Jul 07 2012 */

Formula

G.f.: 1/( (1-x^3) * Product_{n>=3} (1-x^n) ). - Joerg Arndt, Jul 07 2012
a(n) = A182713(n+2) - A182713(n) = A240056(n+1) - A240056(n) for n >= 0. - Clark Kimberling, Mar 31 2014
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (9 * 2^(3/2) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2022

A364056 Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 64, 68, 72, 76, 80, 88, 92, 96, 104, 112, 116, 120, 124, 128, 136, 144, 148, 152, 160, 164, 168, 172, 176, 184, 188, 192, 200, 208, 212, 224, 232, 236, 240, 244, 248, 256, 264, 268, 272, 280, 284, 288, 292
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     2: {1}             64: {1,1,1,1,1,1}      136: {1,1,1,7}
     4: {1,1}           68: {1,1,7}            144: {1,1,1,1,2,2}
     8: {1,1,1}         72: {1,1,1,2,2}        148: {1,1,12}
    12: {1,1,2}         76: {1,1,8}            152: {1,1,1,8}
    16: {1,1,1,1}       80: {1,1,1,1,3}        160: {1,1,1,1,1,3}
    20: {1,1,3}         88: {1,1,1,5}          164: {1,1,13}
    24: {1,1,1,2}       92: {1,1,9}            168: {1,1,1,2,4}
    28: {1,1,4}         96: {1,1,1,1,1,2}      172: {1,1,14}
    32: {1,1,1,1,1}    104: {1,1,1,6}          176: {1,1,1,1,5}
    40: {1,1,1,3}      112: {1,1,1,1,4}        184: {1,1,1,9}
    44: {1,1,5}        116: {1,1,10}           188: {1,1,15}
    48: {1,1,1,1,2}    120: {1,1,1,2,3}        192: {1,1,1,1,1,1,2}
    52: {1,1,6}        124: {1,1,11}           200: {1,1,1,3,3}
    56: {1,1,1,4}      128: {1,1,1,1,1,1,1}    208: {1,1,1,1,6}
		

Crossrefs

Partitions of this type are counted by A027336.
Median of prime indices is A360005(n)/2.
For mode instead of median we have A360013, low A360015.
The low version is A363488, positions of 1's in A363941.
Positions of 1's in A363942.
A112798 lists prime indices, length A001222, sum A056239.
A123528/A123529 gives mean of prime factors, indices A326567/A326568.
A124943 counts partitions by low median, high A124944.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    merr[y_]:=If[Length[y]==0,0,If[OddQ[Length[y]],y[[(Length[y]+1)/2]], y[[1+Length[y]/2]]]];
    Select[Range[100],merr[prifacs[#]]==2&]

A027343 Number of partitions of n that do not contain 9 as a part.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 54, 74, 96, 128, 165, 216, 275, 355, 448, 571, 715, 901, 1120, 1399, 1727, 2139, 2625, 3228, 3938, 4812, 5840, 7094, 8568, 10352, 12447, 14967, 17919, 21450, 25581, 30496, 36234, 43031, 50951, 60292
Offset: 0

Views

Author

Keywords

Crossrefs

9th column of A175788. Cf. A000041, A027336, A027337-A027344.

Programs

Formula

G.f.: (1-x^9) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-9).
a(n) ~ 3*Pi * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 9*Pi/(2*sqrt(6)))/sqrt(n) + (109/8 + 9/(2*Pi^2) + 15769*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

Edited by Alois P. Heinz, Dec 04 2010

A027344 Number of partitions of n that do not contain 10 as a part.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 98, 130, 169, 220, 282, 363, 460, 585, 736, 925, 1154, 1440, 1782, 2205, 2713, 3333, 4075, 4977, 6050, 7347, 8888, 10735, 12925, 15541, 18627, 22297, 26620, 31734, 37741, 44825, 53118, 62865
Offset: 0

Views

Author

Keywords

Crossrefs

10th column of A175788. Cf. A000041, A027336, A027337-A027343.

Programs

  • Maple
    A41:= n-> `if`(n<0, 0, combinat[numbpart](n)):
    a:= n-> A41(n) -A41(n-10):
    seq(a(n), n=0..50);

Formula

G.f.: (1-x^10) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-10).
a(n) ~ 5*Pi * exp(sqrt(2*n/3)*Pi) / (6*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 10*Pi/(2*sqrt(6)))/sqrt(n) + (121/8 + 9/(2*Pi^2) + 19441*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016

Extensions

More terms from Benoit Cloitre, Dec 10 2002
Edited by Alois P. Heinz, Dec 04 2010

A121659 Number of partitions of n into parts with at most one part not greater than 2.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 20, 25, 32, 40, 51, 63, 79, 97, 121, 148, 182, 221, 271, 328, 398, 479, 579, 694, 834, 995, 1190, 1415, 1684, 1995, 2366, 2793, 3298, 3881, 4569, 5360, 6288, 7355, 8603, 10037, 11705, 13619, 15842, 18388, 21333, 24703
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 14 2006

Keywords

Comments

The number of partitions of n that have the first part at least thrice larger than the second part. Example: a(8) = #{8, 7+1, 6+2, 6+1+1, 5+1+1+1, 4+1+1+1+1, 3+1+1+1+1+1}=7. [Mircea Merca, Jul 24 2011]

Examples

			a(8) = #{8,7+1,6+2,5+3,4+4,4+3+1,3+3+2} = 7;
a(9) = #{9,8+1,7+2,6+3,5+4,5+3+1,4+4+1,4+3+2,3+3+3} = 9.
		

Crossrefs

Formula

a(n) = A121081(n) - A008483(n-3) for n>2.
a(n) = p(n) - p(n-2) - p(n-3) + p(n-5) where p(n) = A000041(n). See Merca p. 6. - Michel Marcus, Mar 27 2019
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (4*sqrt(3)*n^2) * (1 - (18/Pi + 61*Pi/24)/sqrt(6*n)). - Vaclav Kotesovec, Jan 15 2022

A173301 a(n) = A000041(2^n - 1).

Original entry on oeis.org

1, 1, 3, 15, 176, 6842, 1505499, 3913864295, 338854264248680, 4216199393504640098482, 59475094770587936660132803278445, 17618334934720173062514849536736413843694654543
Offset: 0

Views

Author

Gary W. Adamson, Feb 15 2010

Keywords

Comments

The partition numbers have an apparent fractal-like structure starting with every term in A173301.
Let A000041 = row 0, then under every (2^n - 1)-th term, begin a new row with the partition numbers; then take finite differences of each column from below.
The sum of finite difference terms will reproduce the partition numbers, with finite difference rows (starting from the top going down) = number of partitions of n that do not contain (1, 2, 3,...). (Cf. the array shown in A173302).

References

  • Refer to tables of the partition numbers.

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[2^n - 1], {n, 0 ,10}] (* Amiram Eldar, Feb 26 2020 *)

Formula

a(n) = A000041(2^n - 1), n = (0, 1, 2,...).
a(n) = A000041(A000225(n)). - Omar E. Pol, Oct 29 2013
Previous Showing 21-30 of 39 results. Next