A005377 Number of low discrepancy sequences in base 4.
0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harald Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), no. 1, 51-70.
Crossrefs
Programs
-
Maple
N := proc(b,n) option remember; local d; add(b^d*numtheory[mobius](n/d),d=numtheory[divisors](n)) ; %/n ; end proc: M := proc(b,n) local h; if n = 0 then 0; else add(N(b,h),h=1..n) ; end if; end proc: nMax := proc(b,s) local n; for n from 0 do if M(b,n) > s then return n-1 ; end if; end do: end proc: A005377 := proc(s) local n,b; b := 4 ; n := nMax(b,s) ; n*(s-M(b,n))+add( (h-1)*N(b,h),h=1..n) ; end proc: seq(A005377(n),n=1..40) ; # R. J. Mathar, Jun 09 2016
-
Mathematica
Np[b_, n_] := Np[b, n] = Sum[b^d*MoebiusMu[n/d], {d, Divisors[n]}]/n; M[b_, n_] := If[n == 0, 0, Sum[Np[b, h], {h, 1, n}]]; nMax[b_, s_] := Module[{n}, For[n = 0, True, n++, If[M[b, n] > s, Return[n - 1]]]]; a[s_] := Module[{n, b}, b = 4; n = nMax[b, s]; n*(s - M[b, n]) + Sum[(h - 1)*Np[b, h], {h, 1, n}]]; Table[a[n], {n, 1, 61}] (* Jean-François Alcover, Sep 12 2023, after R. J. Mathar *)
Formula
Let N(b,n) = (1/n) * Sum_{d|n} mobius(n/d) * b^d. Let M(b,n) = Sum_{k=1..n} N(b,k) with M(b,0) = 0. Let r = r(b,n) be the largest value r such that M(b,r) <= n. Then a(n) = r * (n - M(4, r)) + Sum_{h=1..r} (h-1) * N(4, h) [From Niederreiter paper]. - Sean A. Irvine, Jun 07 2016
G.f.: z^4 * (z^2+1) * (z^4-z^2+1) / (z-1)^2; [Conjectured by Simon Plouffe in his 1992 dissertation, but is incorrect.]
Extensions
Terms, offset, and formula corrected by Sean A. Irvine, Jun 07 2016
Comments